Parent Tricarbollides [nido-7,8,9- $\left.\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}$, nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{12}$, [nido-7,8,10- $\left.\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}$, and Their Derivatives

J. Holub, ${ }^{\dagger}$ B. Štíbr, ${ }^{*}{ }^{\dagger}{ }^{\dagger}$ D. Hnyk, ${ }^{\dagger}$ J. Fusek, ${ }^{\dagger}$ I. Císařová, ${ }^{\ddagger}$ F. Teixidor, ${ }^{\S}$ C. Viñas, ${ }^{\S}$ Z. Plzák, ${ }^{\dagger}$ and P. v. R. Schleyer ${ }^{\perp}$
Contribution from the Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 25068 Rež, Czech Republic, Faculty of Natural Sciences of Charles University, Hlavova 2030, 12842 Prague 2, Czech Republic, Institute of Material Sciences, Campus UAB, 08193 Bellaterra, Spain, and Computer Chemistry-Center, Institute of Organic Chemistry, Universität Erlangen-Nürnberg, Henkestrasse 42, D-91054 Erlangen, Germany

Received April 15, 1997^{\otimes}

Abstract

Deamination of 7 -($\mathrm{Me}_{3} \mathrm{~N}$)-nido-7, $8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (1a) leads either to the parent tricarbollide anion [nido-$\left.7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}\left(\mathbf{2}^{-}\right)$or to the neutral tricarbaborane nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{12}(\mathbf{2 a})$, together with a small amount of 8-Me-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}$ (2b). Di- and trisubstituted derivatives of 2a, 7 -($\mathrm{Bu}{ }^{7} \mathrm{MeN}$)-10-Me-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}(\mathbf{2} \mathbf{c})$, and 7-($\left.\mathrm{Bu}^{7} \mathrm{MeN}\right)-10,11-\mathrm{Me}_{2}$-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{9}(\mathbf{2 d})$ were obtained as byproducts from the methylation of both $7-\left(\mathrm{Bu}^{t}-\right.$ NH_{2})-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}(\mathbf{1 b})$ and $7-\left(\mathrm{Bu}^{t} \mathrm{MeNH}\right)$-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}(\mathbf{1 c})$ with MeI in THF under reflux. Heating of $\mathbf{1 a}$ and $\mathbf{2}^{-}$at $350{ }^{\circ} \mathrm{C}$ resulted in the rearrangement of the carbons on the open-face to give high yields of the isomeric tricarbollides $10-\left(\mathrm{Me}_{3} \mathrm{~N}\right)$-nido- $7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (3a) and [nido-7,8,10- $\left.\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}\left(\mathbf{4}^{-}\right)$, respectively. The structure of $\mathbf{3 a}$ was determined by an X-ray diffraction analysis, and the geometries of the parent compounds $\mathbf{2}^{-}, \mathbf{2 a}$, and 4^{-}were optimized at the ab initio MP2(fc)/6-31G* level. The structures of all compounds also were secured by the excellent agreement between the experimental data and the IGLO/NMR calculations of the ${ }^{11} \mathrm{~B}$ chemical shifts for the parent compounds at the DZ//6-31G*, DZ//MP2/6-31G*, and II'//MP2/6-31G* levels.

Introduction

We reported recently that reactions of the $\left[\text { nido-5,6- } \mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}$ anion with either the CN^{-}anion or $\mathrm{Bu}^{i} \mathrm{NC}$ result in the formation of moderate to good yields of the zwitterionic adducts with the general formula 7-L-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}(\mathbf{1})$ as exemplified by eqs 1 and 2 for $\mathrm{L}=\mathrm{NH}_{2}{ }^{-}$and $\mathrm{Bu}^{1} \mathrm{NH}_{2} .{ }^{1}$ These reactions extended the monocarbon cage-insertion reactions into neutral and anionic dicarbaborane substrates ${ }^{2}$ and generated the first representatives of tricarbollides, the long anticipated compounds of the 11-vertex nido series of tricarbaboranes:

$$
\begin{align*}
& {\left[5,6-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}+\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow} \\
& \quad\left[7-\mathrm{H}_{2} \mathrm{~N}-7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}\right]^{-}+\mathrm{OH}^{-} \tag{1}\\
& \mathrm{Bu}^{\dagger} \mathrm{NC}+\left[5,6-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-} \rightarrow \\
& \quad\left[7-\mathrm{Bu}^{\dagger} \mathrm{NH}-7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}\right]^{-} \xrightarrow{\text { protonation }} \\
& \quad 7-\mathrm{Bu}^{+} \mathrm{NH}_{2}-7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10} \tag{2}
\end{align*}
$$

In a preliminary communication, ${ }^{1 a}$ we reported the synthesis of the parent nido tricarbollide anion $\left[7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}\left(\mathbf{2}^{-}\right)$and the neutral species nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{12}$ (2a). Both have three

[^0]adjacent cluster carbons in the open pentagonal face of the cage. As predicted by two independent theoretical investigations, ${ }^{3}$ isomeric tricarbollides with more extended separation of the cage carbons in the open face might arise from the thermal isomerization of such compounds. Indeed, we have now synthesised the first examples of the parent and zwitterionic 7,8,10tricarbabollide systems, via thermal rearrangement of 1a and $\mathbf{2}^{-} .{ }^{4}$ Sneddon's group also reported preliminary results on the

preparation 7 -substituted derivatives of anion $\mathbf{4}^{-}$, [7-R-nido-$\left.7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}\right]^{-}$(where $\mathrm{R}=\mathrm{Me}$ and PhCH_{2}) via insertion of

[^1]
Scheme 1

additional boron vertex into substituted derivatives of the $10-$ vertex [nido-5,6,9- $\left.\mathrm{C}_{3} \mathrm{~B}_{7} \mathrm{H}_{11}\right]^{-}$anion. ${ }^{3 a}$ These examples document current interest in the tricarbollide area, particularly from the viewpoint of the synthesis of further types of metallatricarbollide sandwich complexes of the $\left\{\right.$ closo $\left.-\mathrm{MC}_{3} \mathrm{~B}_{8}\right\}$ type. ${ }^{5}$ We now report full experimental details of the preparation and some reactions of two isomeric series of parent tricarbollide compounds. The experimental results are substantiated by ab initio geometry optimizations and IGLO/NMR computations which show excellent agreement between experimental and theoretical ${ }^{11} \mathrm{~B}$ NMR chemical shifts for the parent tricarbollides.

Results and Discussion

Syntheses. Deamination ${ }^{6}$ of the $\mathrm{Me}_{3} \mathrm{~N}$ derivative 1a with sodium metal in refluxing THF for 6 h in the presence of naphthalene, followed by careful addition of aqueous CsOH , resulted in the isolation of $\mathrm{Cs}^{+}\left[\text {nido- } 7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-},\left(\mathrm{Cs}^{+}\right) \mathbf{2}^{-}$ (62% isolated yield, also see Scheme 1). Other salts of the parent anion 2^{-}with stabilizing, bulky countercations can be isolated in high yields by adding reactants, such as $\mathrm{NMe}_{4} \mathrm{Cl}$, $\mathrm{PPh}_{4} \mathrm{Cl}$, and/or TlNO_{3} to an alkaline solution of the Cs^{+}salt. The parent anion 2^{-}results from the two-electron deamination reaction (eq 3), followed by hydrolysis of a highly reactive dianionic intermediate $\left[\text { nido-7,8,9- } \mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}\right]^{2-}\left(\mathbf{2}^{2-}\right)$ (eq 4):

$$
\begin{gather*}
\mathrm{Me}_{3} \mathrm{NC}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}+2 \mathrm{Na} \rightarrow\left[\mathrm{Na}^{+}\right]_{2}\left[\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}\right]^{2-}+\mathrm{Me}_{3} \mathrm{~N} \tag{3}\\
\underset{\mathbf{1 a}}{\mathbf{2}^{2-}} \\
{\left[\mathrm{Na}^{+}\right]_{2}\left[\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}\right]^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}^{+}\left[\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}+\mathrm{NaOH}} \\
\mathbf{2}^{\mathbf{2 -}} \tag{4}\\
\mathbf{2}^{-}
\end{gather*}
$$

It is reasonable to suppose that the intermediate $\mathbf{2}^{\mathbf{2 -}}$ contains a free electron pair on one of the cluster carbons.

When the deamination reaction (see eq 3) is followed by the acidification with $\mathrm{CF}_{3} \mathrm{COOH}$ (see Scheme 1), the main product is the neutral tricarbaborane $7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{12}$ (2a), which is isolated easily by chromatographic separation. We presume that $\mathbf{2 a}$ is formed by diprotonation of the dianion $\mathbf{2}^{\mathbf{2 -}}$. As expected, anion $\mathbf{2}^{-}$also behaves as a very strong base and can be protonated easily by acids to give a high yield of the neutral tricarbaborane 2a:

$$
\begin{equation*}
\left[\text { nido-7,8,9- } \mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-} \underset{-\mathrm{H}^{+}}{\stackrel{+\mathrm{H}^{+}}{\rightleftarrows}} \text { nido-7,8,9-} \mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{12} \tag{5}
\end{equation*}
$$

The two adjacent boron atoms in the open pentagonal face of anion $\mathbf{2}^{-}$offer a highly favored site for a hydrogen; this facilitates this protonation. An arrangement similar to $\mathbf{2 a}$ is
found in the isostructural $\left[7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]^{-}$anion ${ }^{7}\left(\mathbf{5}^{-}\right)$. However, deprotonation to the corresponding dicarbollide dianion [7,9$\left.\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{12}\right]^{2-}$ only takes place under forcing conditions. ${ }^{8}$ The same applies to $\mathbf{2 a}$, which can be deprotonated to $\mathbf{2}^{-}$only by strong bases, such as $\mathrm{H}^{-}, \mathrm{OH}^{-}$, and PS ($\mathrm{PS}=$ "proton sponge", 1,8-dimethylaminonaphthalene). As a consequence, pure anion $\mathbf{2}^{-}$can be isolated conveniently as $[\mathrm{PSH}]^{+}\left[\text {nido }-7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}$, $\left(\mathrm{PSH}^{+}\right) \mathbf{2}^{-}$, by reacting PS with tricarbaborane 2a in hexane. Under these conditions, the insolubility of the PSH^{+}salt shifts the equilibrium (eq 5) quantitatively to the left.

A methyl derivative of 2a, 8-Me-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}$ (2b), was isolated together with $7-\left(\mathrm{Me}_{2} \mathrm{NH}\right)$-nido- $7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}(\mathbf{1 d})^{1 \mathrm{~b}}$ as a byproduct from room temperature deamination of $\mathbf{1 a}$ (see eq 3), followed by acidification of the reaction mixture. The formation of $\mathbf{2 b}$ involves an interesting transfer of a methyl group from nitrogen to the $\mathrm{C}(8)$ cluster carbon at the β-position. However, the formation of $\mathbf{2 b}$ and $\mathbf{1 d}$ can be suppressed by carrying out the reaction in THF under reflux. Two additional interesting derivatives of $\mathbf{2 a}$ are formed as side products from methylation of the zwitterionic derivatives $\mathbf{1 b}$ and $\mathbf{1 c}^{\mathbf{1 b}}$ by MeI in the presence of excess NaH in THF under reflux. These derivatives, identified as the neutral compounds $10-\mathrm{Me}-7-\left(\mathrm{Bu}^{t_{-}}\right.$ MeN)-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (2c) and 10,11-Me $\mathrm{Me}_{2}-7$-($\mathrm{Bu}^{7} \mathrm{MeN}$)-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}(\mathbf{2 d})$, were isolated by TLC fractionation in hexane in low yields (5 and 10%, respectively). Although there is no direct evidence for the reaction mechanisms, compounds $\mathbf{2 c}$ and $\mathbf{2 d}$ may be formed by stepwise methylation of $\mathbf{1 c} .^{1 \mathrm{~b}}$ This is deprotonated on the N atom by excess NaH to form the $\left[7-\left(\mathrm{Bu}^{7} \mathrm{MeN}\right) \text {-nido-7,8,9- } \mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}\right]^{-}$anion ($\mathbf{1 c}^{-}$). This anion is methylated at the open-face boron positions $B(9)$ and $B(11)$ for steric reasons rather than on the exoskeletal nitrogen atom:

$$
\begin{gather*}
{\left[\mathrm{Bu}^{t} \mathrm{MeN}-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}\right]^{-}+\mathrm{MeI} \rightarrow \mathrm{I}^{-}+\mathrm{Bu}^{t} \mathrm{MeN}-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10} \mathrm{Me}} \tag{6}\\
\mathbf{1 c ^ { - }}
\end{gather*}
$$

$$
\begin{gather*}
\mathrm{Bu}^{t} \mathrm{MeN}-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10} \mathrm{Me}+\mathrm{H}^{-} \rightarrow \\
\mathbf{2 c} \tag{2}
\end{gather*} \underset{\left.\mathbf{2 c} \mathrm{Bu}^{t} \mathrm{MeN}-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{9} \mathrm{Me}\right]^{-}}{ }+
$$

$$
\begin{align*}
{\left[\mathrm{Bu}^{t} \mathrm{MeN}-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{9} \mathrm{Me}\right]^{-}+\mathrm{MeI} } & \rightarrow \\
\mathbf{2 c}^{-} & \\
& \mathrm{I}^{-}+\mathrm{Bu}^{t} \mathrm{MeN}-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{9} \mathrm{Me}_{2} \tag{8}
\end{align*}
$$

While the parent compound $\mathbf{2 a}$ is only moderately stable, the amino-substituted derivatives $\mathbf{2 c}$ and $\mathbf{2 d}$ are persistent in air due to the favorable influence of their dialkylamino substituents.

The presence of three adjacent cage $\mathbf{C H}$ units in $\mathbf{2}^{-}$and in 1a prompted us to examine their thermal rearrangement reactions. Isomers with separated carbons in the open face of an 11 -vertex nido cluster are expected to be more stable. The isomerization of the $\left[7-\mathrm{Ph}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]^{-}$anion to the isomeric

[^2]
Scheme 2

[7-Ph-7,9- $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]^{-}$at $300{ }^{\circ} \mathrm{C}$ in the 11 -vertex nido dicarbaborane series affords a good precedent. ${ }^{9}$ In addition, ab initio calculations predict that only the $7,8,9 \rightarrow 7,8,10$ isomerization of anion $\mathbf{2}^{-}$should be highly favored. ${ }^{3}$ Rousseau et al. also suggested the mechanism including intermediate structures on the rearrangement path. ${ }^{3 b}$ We have now realized these theoretical predictions experimentally. Indeed, smooth and high-yield thermal isomerization reactions led to representatives of the isomeric 11-vertex $\left\{\right.$ nido-7, $\left.8,10-\mathrm{C}_{3} \mathrm{~B}_{8}\right\}$ system.

After heating the zwitterionic compound 1a (see Scheme 2) in a dry nitrogen atmosphere or, alternatively, in an evacuated sealed tube for 10 min at $350^{\circ} \mathrm{C}$, the isomeric $10-\left(\mathrm{Me}_{3} \mathrm{~N}\right)$-nido-$7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (3a) was isolated in 95% yield. However,

3

5

6
attempted deamination of 3a by treatment with sodium naphthalide in THF under reflux for 2 h failed. In contrast to the behavior of the isomeric compound 1a, these experimental conditions resulted in the removal of one methyl from the nitrogen and the formation of $10-\left(\mathrm{Me}_{2} \mathrm{NH}\right)$-nido- $7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (3b) in 94% yield. Compound $\mathbf{3 b}$ can be reconverted quantitatively to 3a by treatment with $\mathrm{Me}_{2} \mathrm{SO}_{4}$ in an alkaline ethanolic solution.

Nevertheless, the Cs^{+}salt of the $\left[\text {nido- } 7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}$ anion $\left(\mathbf{4}^{-}\right)$can be prepared in 63% yield by heating the Cs^{+} salt of anion 2^{-}at $350{ }^{\circ} \mathrm{C}$ for 30 min (see Scheme 2) and crystallizing the resulting solid from hot water. Treatment of the Cs^{+}salt with 1 equiv of aqueous $\mathrm{PPh}_{4} \mathrm{Cl}$ or TlNO_{3} led to

[^3]essentially quantitative precipitation of the corresponding airstable $\mathrm{PPh}_{4}{ }^{+}$and Tl^{+}salts of anion $\mathbf{4}^{-},\left(\mathrm{PPh}_{4}^{+}\right) \mathbf{4}^{-}$, and $\left(\mathrm{Tl}^{+}\right) \mathbf{4}^{-}$. In contrast to the isomeric anion $\mathbf{2}^{-}$, anion $\mathbf{4}^{-}$cannot be converted to the protonated, neutral species by acids as there is no open-face $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridge possibility. That the neutral tricarbaborane 2a neither decomposes nor rearranges upon sublimation through a hot tube at $350{ }^{\circ} \mathrm{C}$ demonstrates the considerable stability of its $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridging arrangement.

Structural Studies. The constitution of the zwitterionic compounds of type $\mathbf{1}$ was established by an X-ray diffraction analysis of the $\mathrm{Bu}^{t} \mathrm{MeNH}$ derivative 1c. ${ }^{1 \mathrm{~b}}$ This confirmed unambiguously the characteristic adjacent disposition of the three cluster carbons (with no extra hydrogen in the open pentagonal face of the molecule), in agreement with the expected 26-electron count for a nido skeleton. ${ }^{10}$ Unfortunately, neither the Cs^{+}nor Tl^{+}salts of the parent anions $\mathbf{2}^{-}$and $\mathbf{4}^{-}$gave crystals suitable for X-ray diffraction analyses; the PPh_{4}^{+}salts of both anions were extensively disordered as were 7 -substituted derivatives of $\mathbf{4}^{-} .{ }^{3 a}$ We also were unable to grow suitable crystals of the neutral compounds of type 2. The calculation of magnetic properties is an increasingly valuable tool to help in determining the structures of boron compounds. The molecular geometries even of relatively large boron clusters can be established by the combined ab initio/ $\mathrm{IGLO}^{11} \mathrm{~B} / \mathrm{NMR}$ method. ${ }^{3,12,13}$ Since ${ }^{11} \mathrm{~B}$ chemical shifts are sensitive to small changes in molecular geometry, the reliability of ab initio (or experimental) structures can be assessed by comparing the computed with the observed chemical shifts. Structural assignments based on this method have achieved a confidence level that rivals modern X-ray diffraction techniques. ${ }^{14}$ As MP2/6$31 \mathrm{G}^{*}$ geometries give the best results, this electron-correlated level was employed for the optimization of all the parent tricarbollides $\mathbf{2}^{-}, \mathbf{2 a}$, and $\mathbf{4}^{-}$. The resulting molecular structures are depicted in Figures 1-3 and intracluster distances shown in Table 1.

The bond distances in $\mathbf{2}^{-}$(see Table 1) compare excellently to those of the structurally related compound $\mathbf{1} \mathbf{c}^{1 \mathrm{~b}}$ and also are similar to those computed for the isomeric anion $\mathbf{4}^{-}$. As expected from the generally shorter $C-B$ than $B-B$ distances, the open pentagonal faces in $\mathbf{2}^{-}$and in $\mathbf{4}^{-}$are not planar, but

[^4]

Figure 1. Geometry optimized MP2/6-31G* structure of the [nido-7,8,9- $\left.\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}$anion ($\mathbf{2}^{-}$): (top) perspective and (bottom) side views.

Figure 2. Geometry optimized MP2/6-31G* structure of nido-7,8,9$\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{12}$ (2a): (top) perspective and (bottom) side views.
are folded into an envelop conformations (see fold angles ${ }^{15}$ in Table 1 and side views in Figures 1 and 3). The $\mathrm{C}(7)$ and $\mathrm{C}(9)$ atoms in 2^{-}are $0.024 \AA$ below the $\mathrm{C}(8)-\mathrm{B}(10)-\mathrm{B}(11)$ plane; the $B(9)$ and $B(10)$ atoms in $\mathbf{4}^{-}$are situated $0.115 \AA$ above the plane intersecting the three open-face carbons. At MP2/6-31G*, isomer $\mathbf{4}^{-}$is $18.3 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ (the corresponding HF values are $21.8,22.0$, and $23.7 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ for the $6-31 \mathrm{G}^{*}$, II^{\prime}, and DZ basis sets, respectively) more stable than $\mathbf{2}^{-}$(compare the earlier calculated AM1 and RHF/6-21G* values 10.8 and 32.0 $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$, respectively $\left.{ }^{3 \mathrm{~b}}\right)$. These energy differences may be

Figure 3. Geometry optimized MP2/6-31G* structure of the [nido-$\left.7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}$anion (4) : (top) perspective and (bottom) side views.

Table 1. Salient MP2/6-31G* ab Initio Optimized Bond Lengths (\AA) and Angles (deg) for the Parent Tricarbollides $\mathbf{2}^{-}$, 2a, and $\mathbf{4}^{-}$

	$\mathbf{2}^{-}$	$\mathbf{2 a}$	$\mathbf{4}^{-}$
distance a			
$\mathrm{~B}(1)-\mathrm{B}(2)$	1.785	1.759	1.773
$\mathrm{~B}(1)-\mathrm{B}(3)$	1.750	1.775	1.761
$\mathrm{~B}(1)-\mathrm{B}(6)$	1.811	1.800	1.788
$\mathrm{~B}(2)-\mathrm{B}(3)$	1.768	1.755	1.768
$\mathrm{~B}(2)-\mathrm{B}(6)$	1.761	1.778	1.747
$\mathrm{~B}(2)-\mathrm{C}(7)$	1.717	1.685	1.719
$\mathrm{~B}(2)-\mathrm{B}(11)$	1.790	1.803	1.800
$\mathrm{~B}(3)-\mathrm{B}(4)$	1.760	1.767	1.768
$\mathrm{~B}(3)-\mathrm{C}(7)$	1.734	1.698	1.716
$\mathrm{~B}(3)-\mathrm{C}(8)^{b}$	1.724	1.731	1.716
$\mathrm{~B}(4)-\mathrm{B}(9)$			1.800
$\mathrm{~B}(5)-\mathrm{B}(6)^{c}$	1.761	1.778	1.783
$\mathrm{~B}(5)-\mathrm{B}(9)$			1.793
$\mathrm{~B}(5)-\mathrm{C}(10)$	1.790	1.797	1.698
$\mathrm{~B}(6)-\mathrm{B}(10)$	1.515	1.518	1.545
$\mathrm{C}(7)-\mathrm{C}(8)$	1.624	1.656	1.601
$\mathrm{C}(7)-\mathrm{B}(11)$			1.624
$\mathrm{~B}(9)-\mathrm{C}(10)$	1.730	1.828	
$\mathrm{~B}(10)-\mathrm{B}(11)$	1.089^{d}	1.086^{d}	1.089
mean CH	1.197^{d}	1.188^{d}	1.089
mean B-H			
$\mathrm{B}-\mathrm{H}($ bridge $)$			3.6^{g}
fold angles ${ }^{d}$			7.7^{i}
φ	0.3^{f}		
θ	2.1^{h}		

${ }^{a}$ The number of distances is lower due to the C_{s} symmetry. ${ }^{b}$ Equivalent to $\mathrm{B}(3)-\mathrm{C}(7)$ for $\mathbf{4}^{-} .{ }^{c}$ Equivalent to $\mathrm{B}(2)-\mathrm{B}(6)$ for $\mathbf{2}^{-}$ and 2a. ${ }^{d}$ Weighted average. ${ }^{e}$ Defined with respect to the $\mathrm{B}(2)-\mathrm{B}(3)-$ $\mathrm{B}(4)-\mathrm{B} 5)-\mathrm{B}(6)$ plane (also see ref 15$).{ }^{f}$ For the $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ plane. ${ }^{g}$ For the $\mathrm{C}(10), \mathrm{B}(9), \mathrm{B}(11)$ plane. ${ }^{h}$ For the $\mathrm{C}(9)-\mathrm{B}(10)-$ $\mathrm{B}(11)-\mathrm{C}(7)$ plane. ${ }^{i}$ For the $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{B}(9)-\mathrm{B}(11)$ plane.
compared with the HF/3-21G value of $21.7 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ calculated for the corresponding methyl derivatives of $\mathbf{2}^{-}$and $\mathbf{4}^{-} .{ }^{3 a}$

Some bonding details of the neutral compound $\mathbf{2 a}$ differ from its anionic counterpart $\mathbf{2}^{-} ; \mathrm{C}(7)$ and $\mathrm{C}(8)$ in $\mathbf{2 a}$ are $0.073 \AA$ (with respect to the $\mathrm{C}(8)-\mathrm{B}(10)-\mathrm{B}(11)$ plane) closer to the center of the molecule (see side view in Figure 2). The C(7)C(8)C(9) angle (116°) deviates most from the ideal 108° value for a regular pentagon. The longer $\mathrm{B}(10)-\mathrm{B}(11)$ distance (1.828

Figure 4. PLUTO representation of the X-ray crystal structure of 10 $\left(\mathrm{Me}_{3} \mathrm{~N}\right)$-nido-7,8,10- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (3a).

Table 2. Crystal Data and Structure Refinement for $10-\left(\mathrm{Me}_{3} \mathrm{~N}\right)$-nido-7,8,10- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (3a)

empirical formula	$\mathrm{C}_{6} \mathrm{H}_{19} \mathrm{~B}_{8} \mathrm{~N}$
M	191.78
crystal system	monoclinic
space group	$P 2_{1} / m$
a, \AA	$6.9401(7)$
b, \AA	$10.042(1)$
c, \AA	$8.8174(6)$
β, deg	$110.614(7)$
Z	2
V, \AA^{3}	$575.16(9)$
μ, mm^{-1}	0.053
$D_{\text {calcd }} \mathrm{mg} / \mathrm{m}^{3}$	1.107
$F(000)$	204
θ range, deg	$2.47-26.96$
scan mode	$\theta-2 \theta$
h, k, l collected	$h\langle-8,8\rangle, k\langle 0,12\rangle, l\langle-11,11\rangle$
no. of reflcns measd	2498
no. of unique reflcns	$1325\left[R_{\text {(int) }}=0.093\right]$
no. of params	178
final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0478, w R_{2}=0.1045$
R indices (all data)	$R_{1}=0.1651, w R_{2}=0.1450$
extinction coeff	$0.035(11)$
$\Delta \rho$, max., min., $\mathrm{e} \cdot \AA^{-3}$	$0.181,-0.222$

Table 3. Positional Parameters for Non-Hydrogen Atoms in 10-($\mathrm{Me}_{3} \mathrm{~N}$)-nido-7,8,10- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (3a)

atom	x	y	z	$U(\mathrm{eq})^{a}$
$\mathrm{~B}(1)$	$2236(13)$	$1492(9)$	$6569(10)$	$35(2)$
$\mathrm{B}(2)$	$-249(14)$	$1540(10)$	$6640(12)$	$31(2)$
$\mathrm{B}(3)$	$519(7)$	$2777(8)$	$5585(5)$	$39(3)$
$\mathrm{B}(4)$	$3089(13)$	$3162(10)$	$6739(11)$	$40(2)$
$\mathrm{B}(5)$	$3889(2)$	$2155(4)$	$8441(5)$	$33(2)$
$\mathrm{B}(6)$	$1760(10)$	$1126(6)$	$8371(7)$	$29(1)$
$\mathrm{C}(7)$	$-776(14)$	$3180(9)$	$6877(11)$	$35(2)$
$\mathrm{C}(8)$	$1109(10)$	$4051(5)$	$6938(5)$	$40(1)$
$\mathrm{B}(9)$	$2965(11)$	$3804(6)$	$8583(7)$	$37(1)$
$\mathrm{C}(10)$	$2286(4)$	2500	$9466(3)$	$31(1)$
$\mathrm{B}(11)$	$-134(7)$	$2290(14)$	$8488(5)$	$30(3)$
N	$3077(4)$	2500	$11312(3)$	$35(1)$
$\mathrm{C}(1)$	$5383(6)$	2500	$12052(4)$	$66(1)$
$\mathrm{C}(2)$	$2324(6)$	$3706(3)$	$11921(3)$	$60(1)$

${ }^{a}$ Equivalent isotropic displacement parameters $\AA^{2} \cdot 10^{3}$ defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.
\AA) in 2a reflects the influence of the hydrogen bridge (compare the equivalent separation of $1.95(4) \AA$ found crystallographically for the isostructural anion $\left.\left[\text { nido-7,9- } \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]^{-}\left(5^{-}\right)\right) .{ }^{16}$

The structure of the zwitterionic compound $\mathbf{3 a}$ was confirmed by a single-crystal X-ray diffraction study (see Figure 4). The crystal data, selected bond distances, and bond angles are in Tables $2-5$. In general, the $B-B, C-B$, and $C-C$ separations are very similar to those of the parent analog 4^{-}. As expected,

[^5]Table 4. Selected Interatomic Distances (\AA) for $10-\left(\mathrm{Me}_{3} \mathrm{~N}\right)$-nido- $7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (3a)

$\mathrm{B}(1)-\mathrm{B}(2)$	$1.749(11)$	$\mathrm{B}(5)-\mathrm{B}(6)$	$1.786(7)$
$\mathrm{B}(1)-\mathrm{B}(3)$	$1.763(12)$	$\mathrm{B}(5)-\mathrm{B}(9)$	$1.795(8)$
$\mathrm{B}(1)-\mathrm{B}(4)$	$1.767(10)$	$\mathrm{B}(5)-\mathrm{C}(10)$	$1.697(5)$
$\mathrm{B}(1)-\mathrm{B}(5)$	$1.775(9)$	$\mathrm{B}(5)-\mathrm{H}(5)$	$1.06(3)$
$\mathrm{B}(1)-\mathrm{B}(6)$	$1.772(9)$	$\mathrm{B}(6)-\mathrm{C}(10)$	$1.650(6)$
$\mathrm{B}(1)-\mathrm{H}(1)$	$1.09(5)$	$\mathrm{B}(6)-\mathrm{B}(11)$	$1.789(11)$
$\mathrm{B}(2)-\mathrm{B}(3)$	$1.744(13)$	$\mathrm{B}(6)-\mathrm{H}(6)$	$1.05(4)$
$\mathrm{B}(2)-\mathrm{B}(6)$	$1.717(11)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.559(7)$
$\mathrm{B}(2)-\mathrm{C}(7)$	$1.715(8)$	$\mathrm{C}(7)-\mathrm{B}(11)$	$1.602(12)$
$\mathrm{B}(2)-\mathrm{B}(11)$	$1.771(11)$	$\mathrm{C}(7)-\mathrm{H}(7)$	$0.99(5)$
$\mathrm{B}(2)-\mathrm{H}(2)$	$1.15(4)$	$\mathrm{C}(8)-\mathrm{B}(9)$	$1.584(8)$
$\mathrm{B}(3)-\mathrm{B}(4)$	$1.757(10)$	$\mathrm{C}(8)-\mathrm{H}(8)$	$0.91(4)$
$\mathrm{B}(3)-\mathrm{C}(7)$	$1.729(9)$	$\mathrm{B}(9)-\mathrm{C}(10)$	$1.673(6)$
$\mathrm{B}(3)-\mathrm{C}(8)$	$1.698(9)$	$\mathrm{B}(9)-\mathrm{H}(9)$	$1.14(4)$
$\mathrm{B}(3)-\mathrm{H}(3)$	$1.08(3)$	$\mathrm{C}(10)-\mathrm{B}(11)$	$1.609(6)$
$\mathrm{B}(4)-\mathrm{B}(5)$	$1.731(9)$	$\mathrm{C}(10)-\mathrm{N}$	$1.524(3)$
$\mathrm{B}(4)-\mathrm{C}(8)$	$1.699(9)$	$\mathrm{B}(11)-\mathrm{H}(11)$	$1.06(3)$
$\mathrm{B}(4)-\mathrm{B}(9)$	$1.779(11)$	$\mathrm{N}-\mathrm{C}(1)$	$1.500(5)$
$\mathrm{B}(4)-\mathrm{H}(4)$	$1.13(5)$	$\mathrm{N}-\mathrm{C}(2)$	$1.491(3)$

Table 5. Selected Angles (deg) for
10-($\left.\mathrm{Me}_{3} \mathrm{~N}\right)$-nido-7,8,10- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (3a)

$\mathrm{B}(2)-\mathrm{B}(1)-\mathrm{B}(3)$	59.5(5)	$\mathrm{B}(9)-\mathrm{B}(5)-\mathrm{C}(10)$	57.2(2)
$\mathrm{B}(2)-\mathrm{B}(1)-\mathrm{B}(4)$	106.0(7)	$\mathrm{B}(2)-\mathrm{B}(6)-\mathrm{B}(1)$	60.1(4)
$B(3)-B(1)-B(4)$	59.7(5)	$B(2)-B(6)-B(5)$	107.1(5)
$B(2)-B(1)-B(6)$	58.4(4)	$\mathrm{B}(2)-\mathrm{B}(6)-\mathrm{C}(10)$	105.1(4)
$B(3)-B(1)-B(6)$	106.6(5)	$\mathrm{B}(2)-\mathrm{B}(6)-\mathrm{B}(11)$	60.6(3)
$B(4)-B(1)-B(6)$	106.5(7)	$B(5)-B(6)-B(1)$	59.9(3)
$B(2)-B(1)-B(5)$	106.2(5)	$B(5)-B(6)-C(10)$	59.0(3)
$B(3)-B(1)-B(5)$	106.6(5)	$\mathrm{B}(5)-\mathrm{B}(6)-\mathrm{B}(11)$	103.6(5)
$B(4)-B(1)-B(5)$	58.5(4)	$\mathrm{C}(10)-\mathrm{B}(6)-\mathrm{B}(1)$	106.2(4)
$B(5)-B(1)-B(6)$	60.5(3)	$\mathrm{B}(11)-\mathrm{B}(6)-\mathrm{B}(1)$	106.8(5)
$\mathrm{B}(1)-\mathrm{B}(2)-\mathrm{B}(11)$	108.6(6)	$\mathrm{B}(11)-\mathrm{B}(6)-\mathrm{C}(10)$	55.6(3)
$B(3)-B(2)-B(1)$	60.6(5)	$\mathrm{B}(2)-\mathrm{C}(7)-\mathrm{B}(3)$	60.8(6)
$\mathrm{B}(3)-\mathrm{B}(2)-\mathrm{B}(11)$	105.3(7)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{B}(2)$	109.3(7)
$B(6)-B(2)-B(1)$	61.5(4)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{B}(3)$	61.9(4)
$B(6)-B(2)-B(3)$	110.0(6)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{B}(11)$	108.3(7)
$\mathrm{B}(6)-\mathrm{B}(2)-\mathrm{B}(11)$	61.7(4)	$\mathrm{B}(11)-\mathrm{C}(7)-\mathrm{B}(2)$	64.4(6)
$\mathrm{C}(7)-\mathrm{B}(2)-\mathrm{B}(1)$	106.6(7)	$\mathrm{B}(11)-\mathrm{C}(7)-\mathrm{B}(3)$	114.0(7)
$\mathrm{C}(7)-\mathrm{B}(2)-\mathrm{B}(3)$	60.0(5)	$\mathrm{B}(3)-\mathrm{C}(8)-\mathrm{B}(4)$	62.3(4)
$\mathrm{C}(7)-\mathrm{B}(2)-\mathrm{B}(6)$	105.4(8)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{B}(3)$	64.0(4)
$\mathrm{C}(7)-\mathrm{B}(2)-\mathrm{B}(11)$	54.7(6)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{B}(4)$	113.6(6)
$B(1)-B(3)-B(2)$	59.8(4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{B}(9)$	110.2(5)
$B(1)-B(3)-B(4)$	60.3(5)	$\mathrm{B}(9)-\mathrm{C}(8)-\mathrm{B}(3)$	116.2(4)
$B(1)-B(3)-C(7)$	105.4(5)	$\mathrm{B}(9)-\mathrm{C}(8)-\mathrm{B}(4)$	65.5(5)
$B(4)-B(3)-B(2)$	106.7(5)	$B(5)-B(9)-B(4)$	57.9(4)
$B(4)-B(3)-C(7)$	103.0(5)	$\mathrm{C}(8)-\mathrm{B}(9)-\mathrm{B}(4)$	60.4(3)
$\mathrm{C}(7)-\mathrm{B}(3)-\mathrm{B}(2)$	59.2(4)	$\mathrm{C}(8)-\mathrm{B}(9)-\mathrm{B}(5)$	106.0(4)
$\mathrm{C}(8)-\mathrm{B}(3)-\mathrm{B}(1)$	104.6(4)	$\mathrm{C}(8)-\mathrm{B}(9)-\mathrm{C}(10)$	106.1(4)
$\mathrm{C}(8)-\mathrm{B}(3)-\mathrm{B}(2)$	101.8(4)	$\mathrm{C}(10)-\mathrm{B}(9)-\mathrm{B}(4)$	104.7(4)
$\mathrm{C}(8)-\mathrm{B}(3)-\mathrm{B}(4)$	58.9(4)	$\mathrm{C}(10)-\mathrm{B}(9)-\mathrm{B}(5)$	58.5(3)
$\mathrm{C}(8)-\mathrm{B}(3)-\mathrm{C}(7)$	54.1(3)	$\mathrm{B}(6)-\mathrm{C}(10)-\mathrm{B}(5)$	64.5(3)
$B(1)-B(4)-B(3)$	60.6(6)	$B(9)-C(10)-B(5)$	64.4(3)
$B(1)-B(4)-B(5)$	61.0(4)	$\mathrm{B}(9)-\mathrm{C}(10)-\mathrm{B}(6)$	115.0(3)
$B(3)-B(4)-B(5)$	108.9(6)	$\mathrm{B}(9)-\mathrm{C}(10)-\mathrm{B}(11)$	105.3(5)
$\mathrm{C}(8)-\mathrm{B}(4)-\mathrm{B}(1)$	104.4(6)	$\mathrm{B}(11)-\mathrm{C}(10)-\mathrm{B}(5)$	116.3(3)
$\mathrm{C}(8)-\mathrm{B}(4)-\mathrm{B}(3)$	58.8(4)	$\mathrm{B}(11)-\mathrm{C}(10)-\mathrm{B}(6)$	66.6(5)
$\mathrm{C}(8)-\mathrm{B}(4)-\mathrm{B}(5)$	103.9(5)	$\mathrm{N}-\mathrm{C}(10)-\mathrm{B}(5)$	120.8(2)
$\mathrm{C}(8)-\mathrm{B}(4)-\mathrm{B}(9)$	54.1(4)	$\mathrm{N}-\mathrm{C}(10)-\mathrm{B}(6)$	123.2(2)
$B(9)-B(4)-B(1)$	107.4(7)	$\mathrm{N}-\mathrm{C}(10)-\mathrm{B}(9)$	116.3(2)
$B(9)-B(4)-B(3)$	104.0(5)	$\mathrm{N}-\mathrm{C}(10)-\mathrm{B}(11)$	119.2(3)
$B(9)-B(4)-B(5)$	61.5(4)	$\mathrm{B}(6)-\mathrm{B}(11)-\mathrm{B}(2)$	57.7(4)
$\mathrm{B}(1)-\mathrm{B}(5)-\mathrm{C}(10)$	104.0(4)	$\mathrm{C}(7)-\mathrm{B}(11)-\mathrm{B}(2)$	60.9(3)
$B(4)-B(5)-B(1)$	60.5(3)	$\mathrm{C}(7)-\mathrm{B}(11)-\mathrm{B}(6)$	107.1(4)
$\mathrm{B}(4)-\mathrm{B}(5)-\mathrm{C}(10)$	105.8(4)	$\mathrm{C}(7)-\mathrm{B}(11)-\mathrm{C}(10)$	108.3(6)
$B(6)-B(5)-B(1)$	59.7(3)	$\mathrm{C}(10)-\mathrm{B}(11)-\mathrm{B}(2)$	104.5(4)
$B(6)-B(5)-B(4)$	107.4(4)	$\mathrm{C}(10)-\mathrm{B}(11)-\mathrm{B}(6)$	57.8(3)
$B(6)-\mathrm{B}(5)-\mathrm{C}(10)$	56.5(2)	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(10)$	113.1(2)
$B(9)-B(5)-B(1)$	106.3(4)	$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(1)$	107.4(2)
$B(9)-B(5)-B(4)$	60.6(4)	$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(10)$	110.1(2)
$B(9)-B(5)-B(6)$	103.0(4)		

the open pentagonal face is distorted slightly away from an ideal planar arrangement. In the actual puckered configuration, boron vertices $B(9)$ and $B(11)$ are situated $0.159(11) \AA$ above the $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(10)$ plane; the dihedral angle between the $\mathrm{C}(10)-$

Figure 5. A plot of experimental ${ }^{11} \mathrm{~B}$ chemical shifts vs calculated II'/MP2/6-31G* IGLO chemical shifts for the parent tricarbollides $[\mathrm{PSH}]^{+}\left[\text {nido- } 7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}\left[\left(\mathrm{PSH}^{+}\right) \mathbf{2}^{-}\right]$, nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{12}(\mathbf{2 a})$, and $\left[\mathrm{PPh}_{4}\right]{ }^{+}\left[\text {nido- } 7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}\left[\left(\mathrm{PPh}_{4}^{+}\right) \mathbf{4}^{-}\right]$.

Figure 6. Stick representation and comparison of the ${ }^{11} \mathrm{~B}$ chemical shifts and relative intensities for the 11 -vertex nido compounds 7-(Me $\left.\mathrm{Me}_{3} \mathrm{~N}\right)-7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (1a, data from ref 1), $[\mathrm{PSH}]^{+}\left[7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}$ $\left[\left(\mathrm{PSH}^{+}\right) 2^{-}\right], \mathrm{Tl}^{+}\left[7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]\left[\left(\mathrm{Tl}^{+}\right) \mathbf{2}^{-}\right]$, and $7,8,9,10-\mathrm{C}_{4} \mathrm{~B}_{7} \mathrm{H}_{11}$ (6) (data from ref 18 a) (bottom). The upper diagram is a plot of $\delta\left({ }^{1} \mathrm{H}\right)$ vs $\delta\left({ }^{11} \mathrm{~B}\right)$ for both salts of anion 2^{-}.
$B(9)-B(11)$ and the $C(7)-C(8)-B(9)-B(11)$ planes is $12.6-$ $(6)^{\circ}$. These two planes have folding angles $(\varphi=3.6$ and $\theta=$ 9.1°), respectively, with respect to the plane of the lower boron pentagon ($\sigma=0.006$) .

NMR Spectroscopy. As is shown in Figure 5, excellent agreement between the computed and observed (see Table 6) ${ }^{11} \mathbf{B}$ chemical shifts for parent molecules $\mathbf{2}^{-}, \mathbf{2 a}$, and $\mathbf{4}^{-}$was found uniformly; the differences are less than 3.5 ppm at all levels (Table 7). This agreement (along with earlier experience ${ }^{12-14,17}$) indicates that ab initio geometries, particu-

[^6]larly those derived at electron correlated level of theory (MP2/ $6-31 \mathrm{G}^{*}$), afford reasonably good representations of the tricarbollide structures. These computed gas-phase geometries also must approximate those in solution.

In agreement with C_{s} symmetry, the parent compounds $\mathbf{2}^{-}$ and $\mathbf{4}^{-}$(along with the zwitterionic 3a) exhibit 1:2:2:2:1 ${ }^{11} \mathrm{~B}$ patterns (see Figures 6-8) typified by a cluster of closely spaced resonances of integrated intensity 7 centered around -20 ppm and by the characteristic high-field ${ }^{11} \mathrm{~B}(1)$ resonances $(-47.5$ and -48.5 ppm , respectively). Similar patterns also are found for all isoelectronic compounds of the 11 -vertex nido series lacking $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridges on the open face, such as isomeric nido tetracarbaboranes $7,8,9,10-\mathrm{C}_{4} \mathrm{~B}_{7} \mathrm{H}_{11}$ (compound 6 in Figure 6), ${ }^{18} 2,7,9,10-\mathrm{C}_{4} \mathrm{~B}_{7} \mathrm{H}_{11},{ }^{18}$ and $1,7,8,10-\mathrm{C}_{4} \mathrm{~B}_{7} \mathrm{H}_{11},{ }^{18,19}$ along with dicarbaheteroboranes $7,8,10-\mathrm{C}_{2} \mathrm{NB}_{8} \mathrm{H}_{11}{ }^{20}$ and $7,8,10-\mathrm{C}_{2} \mathrm{SB}_{8} \mathrm{H}_{10} .^{21,22}$ The large shielding of the ${ }^{11} \mathrm{~B}(1)$ nucleus is a consequence of high electron density in the open pentagonal face, the area opposite (antipodal) ${ }^{23}$ to the $\mathrm{B}(1) \mathrm{H}$ vertex. Figure 8 shows the excellent correlation of the ${ }^{11} \mathrm{~B}$ chemical shifts among all compounds with the 7,8,10-tricarbollide constitution (structures 3 and $\mathbf{4}^{-}$) we have isolated so far (compare also the NMR data of the $7-\mathrm{Me}$ and $7-\mathrm{PhCH}_{2}$ substituted ${ }^{3 a}$ derivatives of $\mathbf{4}^{-}$).

Comparison of the shielding properties of the thallium and PSH^{+}salts of $\mathbf{2}^{-}$in Figure 6 reveals significant downfield shifts of all resonances of the former salt. This effect is most remarkable for the $\mathrm{B}(10,11)(\Delta \delta 7.3 \mathrm{ppm})$ and $\mathrm{B}(1)(\Delta \delta 5.9$ ppm) atoms. Also the $\delta\left({ }^{11} \mathrm{~B}\right) / \delta\left({ }^{1} \mathrm{H}\right)$ correlation line for the $\left(\mathrm{Tl}^{+}\right) \mathbf{2}^{-}$compound (dotted line in the upper trace in Figure 5) is much flatter than that for the PSH^{+}salt. These differences reflect the change in electron density (polarization) due to the closer approach of the Tl^{+}ion to $\mathrm{B}(10,11)$ at the open face of the tricarbollide anion as shown by a preliminary $a b$ initio computation (compare thallium derivatives of the isoelectronic $\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]^{2-}$ dicarbollide dianion ${ }^{24}$). On the other hand, the ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ chemical shifts for the thallium salt of the isomer $\mathbf{4}^{-}$do not differ too much from those for the $\mathrm{PPh}_{4}{ }^{+}$salt (see Table 6 and upper part of Figure 8), which may be due to the more central cation location in agreement with an ionic formulation $\mathrm{Tl}^{+}\left[7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-},\left(\mathrm{Tl}^{+}\right) 4^{-}$.

Due to the presence of a $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridge ${ }^{22,23}$ on the open pentagonal face in $\mathbf{2 a}$, there are pronounced differences both in the order and the position of individual boron resonances in comparison to 2^{-}(see Figure 7). Protonation of the open face of $\mathbf{2}^{-}$results in a marked deshielding of the corresponding ${ }^{11} \mathrm{~B}$ (1) nucleus in $2 \mathbf{a}$ (-35.2 ppm ; compare -36.6 ppm for the isostructural thiaanalog [nido-7-SB $\left.{ }_{10} \mathrm{H}_{11}\right]^{-}$). ${ }^{22}$ Figure 7 also reveals straightforward NMR and structural relationships between 2a and its anionic dicarbon analog 5^{-}which has the same type of open-face hydrogen bridge. ${ }^{7}$ Figure 7 shows the similarities among all neutral tricarbollide compounds of general constitution 2 thus far isolated. The asymmetric derivatives $\mathbf{2 c}$ and $2 \mathbf{d}$ exhibit eight different boron resonances including signals

[^7]Table 6. NMR Data

compound	nucleus	δ (assignment, $J_{\text {BH }}(\mathrm{Hz})$)
$\mathrm{Cs}^{+}\left[\text {nido }-7,8,9-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-},(\mathrm{Cs})^{+} \mathbf{2}^{-}$	${ }^{11} \mathrm{~B}^{a}$	$\begin{aligned} & -15.5\left(\mathrm{~B} 6, \sim 156^{b}\right),-16.5\left(\mathrm{~B} 10,11, \sim 125^{b}\right),-20.5(\mathrm{~B} 2,5,143),-23.5(\mathrm{~B} 3,4,158), \\ & -47.3(\mathrm{~B} 1,134) \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}{ }^{\text {c }}$	cross-peaks: B6-B10,11; B6-B2,5; B6-B1; B2,5-B3,4; B2,5-B1; B3,4-B1
	${ }^{1} \mathrm{H}^{d}$	2.09 (H8), 1.48 (H7,9), 1.47 (H3,4), 1.13 (H10,11), 1.08 (H2,5), 0.96 (H6), 0.05 (H1)
$[\mathrm{PSH}]^{+}\left[\text {nido-7,8,9- } \mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-},[\mathrm{PSH}]^{+} \mathbf{2}^{-}$	${ }^{11} \mathrm{~B}^{a}$	$\begin{aligned} & -15.5(\mathrm{~B} 6, \sim 135),-16.6(\mathrm{~B} 10,11, \sim 125),-20.6(\mathrm{~B} 2,5,144),-23.6(\mathrm{~B} 3,4,153), \\ & -47.5(\mathrm{~B} 1,143) \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}^{c}$	cross-peaks: B6-B10,11; ${ }^{e}$ B6-B2,5; B6-B1; B2,5-B3,4; B2,5-B1; B3,4-B1
	${ }^{1} \mathrm{H}^{d}$	$\begin{aligned} & 7.39\left(\mathrm{PSH}^{+}, 4 \mathrm{H}\right), 6.39\left(\mathrm{PSH}^{+}, 2 \mathrm{H}\right), 2.79\left(\mathrm{PSH}^{+}, 12 \mathrm{H}\right) \sim 2.15(\mathrm{H} 8), 1.50(\mathrm{H} 7,9) \text {, } \\ & 1.55(\mathrm{H} 10,11), 1.47(\mathrm{H} 3,4), 1.09(\mathrm{H} 2,5), 0.97(\mathrm{H} 6), 0.05(\mathrm{H} 1) \end{aligned}$
$\mathrm{Tl}^{+}\left[\right.$nido-7,8,9-C $\left.{ }_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right],\left(\mathrm{Tl}^{+}\right) \mathbf{2}^{-}$	${ }^{11} \mathrm{~B}^{a}$	$\begin{aligned} & -9.3(\text { B10,11, 122), }-12.6(\text { B6, 137), }-16.7(\text { B2,5, 153 }),-21.7(\text { B3 }, 4,161), \\ & -41.6(\text { B } 1,141) \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}^{c}$	$\begin{aligned} & \text { cross-peaks: B10,11-B6; B10,11-B2,5;B6-B2,5;B6-B1; B2,5-B3,4; B2,5-B1; } \\ & \text { B3,4-B1 } \end{aligned}$
	${ }^{1} \mathrm{H}^{d}$	2.66 (H8), 1.76 (H8), 1.65 (H3,4), 1.43 (H10,11), 1.39 (H6), 1.39 (H2,5), 1.24 (H1)
nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{12}, \mathbf{2 a}$	${ }^{11} \mathrm{~B}^{a}$	$\begin{aligned} & 0.45(\mathrm{~B} 2,5,158),-19.0(\mathrm{~B} 3,4, \sim 170),-20.0\left(\mathrm{~d}, \mathrm{~B} 10,11, \sim 125 / 39^{f}\right),-25.9(\mathrm{~d}, \mathrm{~B} 6,146), \\ & -35.2(\mathrm{~d}, \mathrm{~B} 1,152) \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}{ }^{c}$	cross-peaks: B2,5-B3,4; B2,5-B10,11; B2,5-B6; B3,4-B1; B10,11-B6; B6-B1
	${ }^{1} \mathrm{H}^{d}$	$\begin{aligned} & 3.76(\mathrm{H} 8), 3.08(\mathrm{H} 7,9), 2.65(\mathrm{H} 2,5), 1.85(\mathrm{H} 3,4), 1.84(\mathrm{H} 10,11), 1.15(\mathrm{H} 1), 0.91(\mathrm{H} 6), \\ & -2.19(\mu \mathrm{H} 10,11) \end{aligned}$
8-Me-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}, \mathbf{2 b}$	${ }^{11} \mathrm{~B}^{a}$	$\begin{aligned} & 0.2(\mathrm{~B} 2,5,160),-15.8(\mathrm{~B} 3,4,172),-19.9\left(\mathrm{~B} 10,11,140 / 36^{f}\right),-28.2(\mathrm{~B} 6,147), \\ & \quad-33.6(\mathrm{~B} 1,150) \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}{ }^{c}$	cross-peaks: B2,5-B3,4; B2,5-B10,11; B2,5-B6; B3,4-B1; B10,11-B6; B6-B1
	${ }^{1} \mathrm{H}^{d}$	$\begin{aligned} & 2.95(\mathrm{H} 7,9), 2.61(\mathrm{H} 2,5), 1.84(\mathrm{H} 10,11), 1.68(\mathrm{Me}, 3 \mathrm{H}), \sim 1.70(\mathrm{H} 3,4),{ }^{b} 1.15(\mathrm{H} 1), \\ & 0.79(\mathrm{H} 6),-2.00(\mu \mathrm{H} 10,11) \end{aligned}$
10-Me-7-($\left.\mathrm{Bu}^{t} \mathrm{MeN}\right)$-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}, \mathbf{2 c}$	${ }^{11} \mathrm{~B}^{a, g}$	$\begin{aligned} & -0.7(\text { B2, 158), }-3.0(\text { B5 160 }),-9.5(\mathrm{~B} 10),-18.7(\mathrm{~B} 3,170),-19.3(\mathrm{~B} 4,172), \\ & \quad-20.2(\text { d, B11), }-24.2(\mathrm{~B} 6,153),-35.2(\mathrm{~B} 1,155) \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}^{c}$	cross-peaks: B2-B11; B2-B6; B2-B1; B5-B6; B5-B1; B10-B6; B3-B1; B3-B4;e B4-B1; B11-B6
	${ }^{1} \mathrm{H}^{d}$ ${ }^{11} \mathrm{~B}^{a, g}$	3.97 (H8), 3.11 (H2), 2.60 (H9), $2.38\left(\mathrm{Bu}^{t} \mathrm{MeN}\right.$, 3 H), 2.50 (H5), 2.04 (H4), 1.99 (H3), 1.69 (H11), 1.24 ($B u^{i} \mathrm{MeN}, 9 \mathrm{H}$), 1.10 (H1), 0.32 (Me10, 3 H$),-2.13(\mu \mathrm{H} 10,11)$
	${ }^{11} \mathrm{~B}^{a, g}$	$\begin{aligned} & -0.5 \text { (B2, 155), }-5.8 \text { (B5, 156), }-10.5 \text { (s, B11), }-11.5 \text { (s, B10), }-22.1 \text { (B3, 172), } \\ & \quad-23.3 \text { (B4, 173), -24.7 (B6, 146), -36.9 (B1, 150) } \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}^{c}$	cross-peaks: B2-B11; B2-B3; B2-B6; B2-B1; B5-B10; B5-B4; B5-B6; B5-B1; B11-B6; B10-B6; B3-B1; B4-B1
	${ }^{1} \mathrm{H}^{d}$	$3.92(\mathrm{H} 8), 2.81(\mathrm{H} 2), 2.49(\mathrm{H} 9), 2.49\left(\mathrm{Bu}^{t} \mathrm{MeN}, 3 \mathrm{H}\right), 2.38(\mathrm{H} 5), 1.82(\mathrm{H} 4), 1.78(\mathrm{H} 3)$, $1.25\left(B u^{t} \mathrm{MeN}, 9 \mathrm{H}\right), 1.03(\mathrm{H} 1), 0.31(\mathrm{Me} 11,3 \mathrm{H}), 0.26(\mathrm{Me} 10,3 \mathrm{H}),-2.01(\mu \mathrm{H} 10,11)$
	${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}^{h}$	selected cross-peaks: H8-H9; H9-Me10; H9-H5; H2-Me11
10-($\left.\mathrm{Me}_{3} \mathrm{~N}\right)$-nido-7,8,10- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}, \mathbf{3 a}$	${ }^{11} \mathrm{~B}^{a, g}$	$\begin{aligned} & -16.1(\mathrm{~B} 5,6,147),-17.3(\mathrm{~B} 3,157),-20.8(\mathrm{~B} 9,11,135),-25.6(\mathrm{~B} 2,4,152), \\ & -49.0(\mathrm{~B} 1,144) \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}{ }^{\text {c }}$	cross-peaks: B5,6-B9,11; B5,6-B2,4; B5,6-B1; B3-B2,4; B3-B1; B9,11-B2,4; B9,11-B2,4; B2,4-B1
	${ }^{1} \mathrm{H}^{d}$	$\begin{aligned} & 3.09\left(\mathrm{~s}, \mathrm{Me}_{3} \mathrm{~N}, 9 \mathrm{H}\right), 1.88(\mathrm{H} 5,6), 1.87(\mathrm{H} 3), 1.83(\mathrm{H} 9,11), 1.54(\mathrm{H} 7,8), 1.11(\mathrm{H} 2,4), \\ & -0.02(\mathrm{H} 1) \end{aligned}$
10-($\left.\mathrm{Me}_{2} \mathrm{NH}\right)$-nido-7,8,10- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}, \mathbf{3 b}$	${ }^{11} \mathrm{~B}^{a}$	$\begin{aligned} & -16.4(\text { B5,6, 153 }),-17.7(\mathrm{~B} 3, \sim 150),-20.2(\mathrm{~B} 9,11,136),-26.1(\mathrm{~B} 2,4,149), \\ & \quad-49.0(\mathrm{~B} 1,143) \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}{ }^{\text {c }}$	cross-peaks: B5,6-B9,11; B5,6-B2,4; B5,6-B1; B3-B2,4; B3-B1; B9,11-B2,4; B2,4-B1
	${ }^{1} \mathrm{H}^{d}$	$\begin{aligned} & 6.92\left(\mathrm{~s}, \mathrm{br}, \mathrm{Me}_{2} \mathrm{NH} H\right), 2.81\left(\mathrm{t}, M e_{2} \mathrm{NH}, 6 \mathrm{H}, J \sim 15 \mathrm{~Hz}\right), 1.81(\mathrm{H} 3), 1.78(\mathrm{H} 9,11) \text {, } \\ & 1.70(\mathrm{H} 5,6), 1.50(\mathrm{H} 7,8), 1.06(\mathrm{H} 2,4),-0.01(\mathrm{H} 1) \end{aligned}$
$\mathrm{Cs}^{+}\left[\text {nido-7, } 8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-},\left(\mathrm{Cs}^{+}\right) 4^{-}$	${ }^{11} \mathrm{~B}^{a}$	$\begin{aligned} & -15.5(\mathrm{~B} 3,158),-17.8\left(\mathrm{~B} 5,6, \sim 145^{b}\right),-18.0(\mathrm{~B} 9,11,132),-25.3(\mathrm{~B} 2,4,147) \\ & \quad-48.1(\mathrm{~B} 1,140) \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}^{c}$	cross-peaks: B3-B2,4; B3-B1; B5,6-B9,11;e B5,6-B2,4; B5,6-B1; B9,11-B2,4; B2,4-B1
	${ }^{1} \mathrm{H}^{d}$	1.77 (H3), 1.51 (H9,11), 1.22 (H5,6), 1.22 (H7,8), 0.97 (H2,4), 0.56 (H10), -0.10 (H1)
PPh ${ }^{+}\left[\text {nido-7,8,10- } \mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-},\left(\mathrm{PPh}_{4}^{+}\right) 4^{-}$	${ }^{11} \mathrm{~B}^{a}$	$\begin{aligned} & -15.6(\mathrm{~B} 3,156),-18.0\left(\mathrm{~B} 9,11, \sim 130^{b}\right),-18.3\left(\mathrm{~B} 5,6, \sim 140^{b}\right),-25.4(\mathrm{~B} 2,4,143), \\ & \quad-48.5(\mathrm{~B} 1,140) \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}^{c}$	$\begin{aligned} & \text { cross-peaks: B3-B2,4; B3-B1; B9,11-B2,4; B9,11-B5,6; }{ }^{e} \text { B5,6-B2,4; } \\ & \text { B5,6-B1;B2,4-B1 } \end{aligned}$
	${ }^{1} \mathrm{H}^{d}$	1.76 (H3), 1.50 (H9,11), 1.22 (H5,6), 1.17 (H7,8), 0.96 (H2,4), 0.52 (H10), -0.14 (H1)
$\mathrm{Tl}^{+}\left[\right.$nido-7, $\left.8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right],\left(\mathrm{Tl}^{+}\right) \mathbf{4}^{-}$	${ }^{11} \mathrm{~B}^{a}$	$\begin{aligned} & -15.3(\mathrm{~B} 3,-b),-16.0\left(\mathrm{~B} 9,11, \sim 120^{b}\right),-20.1(\mathrm{~B} 5,6,143),-23.3(\mathrm{~B} 2,4,159), \\ & -46.9(\mathrm{~B} 1,140) \end{aligned}$
	${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}{ }^{\text {c }}$	cross-peaks: B3-B1; B9,11-B5,6; B5,6-B2,4; B5,6-B1; B2,4-B1
	${ }^{1} \mathrm{H}^{d}$	1.47 (H2,4), 1.27 (H7,8), 1.15 (H9,11), 1.11(H5,6), 0.99(H3), 0.60 (H10), 0.15(H1)

${ }^{a} \delta\left({ }^{11} \mathrm{~B}\right)$ values (in $\mathrm{CD}_{3} \mathrm{CN}$ and for compounds of type $\mathbf{2}$ in CDCl_{3}) determined from ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right.$ (broadband) $\}$ measurements with assignments by [$\left.{ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}\right]$-COSY NMR spectroscopy. ${ }^{b}$ Values uncertain due to peak overlap. ${ }^{c}$ Measured under the conditions of $\left\{{ }^{1} \mathrm{H}\right.$ (broadband) $\}$ decoupling. ${ }^{d}$ Assignments by ${ }^{1} \mathrm{H}-\left\{{ }^{11} \mathrm{~B}\right.$ (broadband) $\}$ and ${ }^{1} \mathrm{H}-\left\{{ }^{11} \mathrm{~B}\right.$ (selective) $\}$ NMR spectroscopy; unless stated otherwise, all signals are singlets in the ${ }^{1} \mathrm{H}-$ $\left\{{ }^{11} \mathrm{~B}\right.$ (broadband) $\}$ NMR spectrum. ${ }^{e}$ Uncertain cross-peaks due to close proximity of resonances. ${ }^{f}$ Secondary $\mu \mathrm{H}$ splitting. ${ }^{g} J_{\mathrm{BH}}$ coupling constants determined by $\left[{ }^{1} \mathrm{H}-{ }^{11} \mathrm{~B}\right]$ correlation spectroscopy. ${ }^{h}$ Measured under the conditions of $\left\{{ }^{11} \mathrm{~B}\right.$ (broadband) $\}$ decoupling.
shifted (ca. $10-11 \mathrm{ppm}$) downfield due to $10-\mathrm{Me}$ and $10,11-$ Me_{2} substitution. The spectrum of the C_{s} symmetry $8-\mathrm{Me}$ derivative $\mathbf{2 b}$ is similar to that of $\mathbf{2 a}$, with downfield shifts attributable to the presence of the substituent.

Plots at the top of Figures 6-8 show the approximately linear correlations between the proton and ${ }^{11} \mathrm{~B}$ shifts for the cluster BH vertices despite the presence of three CH units in the open face of the tricarbollide cages discussed above. Also the ${ }^{1} \mathrm{H}$ resonances for the CH (cage) protons (see Table 6) also are
within the usual range for the 11 -vertex nido carborane series. ${ }^{7,18,19}$

Conclusion

The reactions reported above lead to three new parent tricarbaboranes $\mathbf{2}^{-}, \mathbf{2 a}$, and $\mathbf{4}^{-}$. Unsubstituted tricarbaboranes so far reported include the "bare-carbon" closo- $\mathrm{C}_{3} \mathrm{~B}_{5} \mathrm{H}_{7}{ }^{25}$ as well as nido-2,3,4- $\mathrm{C}_{3} \mathrm{~B}_{3} \mathrm{H}_{7}{ }^{26}$ and hypho- $\mathrm{C}_{3} \mathrm{~B}_{4} \mathrm{H}_{12} .{ }^{27}$ However, "closo$\mathrm{C}_{3} \mathrm{~B}_{5} \mathrm{H}_{7}$ " and "hypho- $\mathrm{C}_{3} \mathrm{~B}_{4} \mathrm{H}_{12}$ " were found recently to be closo-

Table 7. Calculated IGLO ${ }^{11} \mathrm{~B}$ NMR Shifts ${ }^{a}$ for the Parent Tricarbollides $\mathbf{2}^{-}, \mathbf{2 a}$, and $\mathbf{4}^{-}$

level of theory//geometry	assignments for $\mathbf{2}^{-}$				
	B(1)	B $(2,5)$	B $(3,4)$	B(6)	B(10,11)
DZ//6-31G*	-50.5	-19.5	-26.9	-14.8	-18.9
DZ//MP2/6-31G*	-50.5	-22.2	-26.2	-14.0	-20.1
II'//MP2/6-31G*	-51.0	-20.4	-24.2	-12.9	-19.0
experiment	-47.5	-20.6	-23.6	-15.5	-16.6
level of theory//geometry	assignments for $\mathbf{2 a}$				
	B(1)	$\mathrm{B}(2,5)$	B $(3,4)$	B(6)	B(10,11)
DZ//6-31G*	-36.7	3.4	-20.7	-26.4	-21.4
DZ//MP2/6-31G*	-36.8	2.2	-21.4	-28.1	-22.9
II'//MP2/6-31G*	-36.5	3.7	-19.1	-26.7	-20.8
experiment	-35.2	0.5	-19.0	-25.9	-20.0
level of theory//geometry	assignments for $\mathbf{4}^{-}$				
	B(1)	B $(2,4)$	B(3)	B $(5,6)$	B $(9,11)$
DZ//6-31G*	-50.8	-28.1	-16.6	-18.4	-17.9
DZ//MP2/6-31G*	-50.6	-28.2	-16.8	-19.7	-19.0
II'//MP2/6-31G*	-51.2	-26.4	-14.0	-17.2	-18.5
experiment	-48.5	-25.4	-15.6	-18.3	-18.0

${ }^{a}$ In ppm relative to $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Figure 7. Stick representation and comparison of the ${ }^{11} \mathrm{~B}$ chemical shifts and relative intensities for $\mathrm{Cs}^{+}\left[\text {nido- } 7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]^{-}\left(5^{-}\right)$(data from ref 7) and the neutral tricarbollides 7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{12}$ (2a), 8-Me-7,8,9$\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{12}(\mathbf{2 b}), 10-\mathrm{Me}-7-\left(\mathrm{Bu}^{t} \mathrm{MeN}\right)$-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}(\mathbf{2 c})$, and 10,11-$\mathrm{Me}_{2}-7-\left(\mathrm{Bu}^{t} \mathrm{MeN}\right)$-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (2d) (bottom). The upper diagram is a plot of $\delta\left({ }^{1} \mathrm{H}\right)$ vs $\delta\left({ }^{11} \mathrm{~B}\right)$ for all compounds of structure 2.
$2,3-\mathrm{C}_{2} \mathrm{~B}_{5} \mathrm{H}_{7}{ }^{28}$ and $1-\mathrm{Me}$-arachno-2,5- $\mu-\mathrm{CH}_{2}-1-\mathrm{CB}_{4} \mathrm{H}_{7},{ }^{29}$ respectively, and also the synthesis and identity of nido-2,3,4- $\mathrm{C}_{3} \mathrm{~B}_{3} \mathrm{H}_{7}$ were reinvestigated. ${ }^{30}$ Moreover, these long-anticipated parent 11-vertex nido parent species $\mathbf{2}^{-}, \mathbf{2 a}$, and $\mathbf{4}^{-}$facilitate the
(25) Thompson, M. L.; Grimes, R. N. J. Am. Chem. Soc. 1971, 93, 66776679.
(26) (a) Bramlett, C. L.; Grimes, R. N. J. Am. Chem. Soc. 1966, 88, 4269-4270. (b) Grimes, R. N.; Bramlett, C. L. J. Am. Chem. Soc. 1967, 89, 2557-2560. (c) Franz, D. A.; Grimes, R. N. J. Am. Chem. Soc. 1971, 93, 387-394.

Figure 8. Stick representation and comparison of the ${ }^{11} \mathrm{~B}$ chemical shifts and relative intensities for the isomeric 11-vertex nido compounds $\left.\left[\mathrm{PPh}_{4}\right]^{+}\left[7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}\left[\mathrm{PPh}_{4}^{+}\right) \mathbf{4}^{-}\right], \mathrm{Tl}^{+}\left[7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]^{-}\left[\left(\mathrm{Tl}^{+}\right) \mathbf{4}^{-}\right]$, $10-\left(\mathrm{Me}_{3} \mathrm{~N}\right)-7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (3a), and 10-($\left.\mathrm{Me}_{2} \mathrm{NH}\right)-7,8,10-\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (3b) (bottom). The upper diagram is a plot of $\delta\left({ }^{1} \mathrm{H}\right)$ vs $\delta\left({ }^{11} \mathrm{~B}\right)$ for all these compounds.
expansion of tricarbollide ${ }^{1,4}$ chemistry and its extension to metallatricarbollide ${ }^{5}$ and metallatricarbaborane ${ }^{31}$ areas which are scarcely represented. We also are investigating boron-elimination and expansion reactions leading to new types of nonmetallic tricarbaborane species. The recent synthesis of the first unsubstituted 10-vertex tricarbaborane arachno-5,6,9- $\mathrm{C}_{3} \mathrm{~B}_{7} \mathrm{H}_{13}{ }^{4}$ via boron elimination from anion $\mathbf{4}^{-}$is an example of such reactions in the tricarbollide series.

Experimental Section

General Procedures. All reactions were carried out with use of standard vacuum or inert-atmosphere techniques as described by Shriver, ${ }^{32}$ although some operations, such as preparative TLC and column chromatography, were carried out in air. The starting tricarbaboranes $\mathbf{1 a}-\mathbf{c}$ were prepared as reported previously ${ }^{1 \mathrm{~b}}$ and sublimed before use. The metallic Na was purchased from Aldrich and used as received. The Aldrich tetrahydrofuran (THF) was dried over $\mathrm{Na} /$ benzophenone, hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried over CaH_{2} and freshly distilled before use. Other chemicals were reagent or analytical grade

[^8]and were used as purchased. Preparative TLC was carried out using silica gel (Aldrich, type 254 nm) as the stationary phase on plates of dimensions $200 \times 200 \times 1 \mathrm{~mm}$, made on glass formers from aqueous slurries followed by drying in air at $80^{\circ} \mathrm{C}$. The purity of individual chromatographic fractions was checked by analytical TLC on Silufol (Kavalier, silica gel on aluminum foil; detection by diiodine vapor, followed by 2% aqueous AgNO_{3} spray). Melting points were measured in sealed capillaries under nitrogen and are uncorrected. Low resolution mass spectra were obtained using a Finnigan MAT MAGNUM ion trap quadrupole mass spectrometer equipped with a heated inlet option, as developed by Spectronex AG, Basel, Switzerland (70 eV, EI ionisation). Proton $\left({ }^{1} \mathrm{H}\right)$ and boron $\left({ }^{11} \mathrm{~B}\right)$ NMR spectroscopy was performed at 7.05 and 11.75 Tesla on Bruker ARX 300 and Varian XL-500 instruments, respectively. The $\left[{ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}\right]$-COSY and ${ }^{1} \mathrm{H}-\left\{{ }^{11} \mathrm{~B}-\right.$ (selective)\} NMR experiments were essentially as described in other related papers from our laboratories. ${ }^{33}$ Chemical shifts are given in ppm to high-frequency (low field) of $\Xi=32.083971 \mathrm{MHz}$ (nominally $\mathrm{F}_{3} \mathrm{~B} \cdot \mathrm{OEt}_{2}$ in CDCl_{3}) for ${ }^{11} \mathrm{~B}$ (quoted $\pm 0.5 \mathrm{ppm}$) and $\Xi=100 \mathrm{MHz}$ $\left(\mathrm{SiMe}_{4}\right.$) for ${ }^{1} \mathrm{H}$ (quoted $\pm 0.05 \mathrm{ppm}$), Ξ being defined as in ref 34 . Solvent resonances were used as internal secondary standards. Coupling constants ${ }^{1} J\left({ }^{11} \mathrm{~B}-{ }^{1} \mathrm{H}\right)$ are taken from resolution-enhanced ${ }^{11} \mathrm{~B}$ spectra with digital resolution $\pm 8 \mathrm{~Hz}$ and are given in Hz ; in some cases these were determined from $\left[{ }^{1} \mathrm{H}-{ }^{11} \mathrm{~B}\right]$-correlation spectra ${ }^{35}$ with enhanced resolution of $c a . \pm 1 \mathrm{~Hz}$. IR spectra were obtained on a EU 9512 Pye-Unicam Fourier transform spectrometer. Elemental analyses were performed at the Analytical Laboratory of the Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic.

Salts of the $\left[\text { nido-7,8,9- } \mathrm{C}_{3} \mathrm{~B}_{\mathbf{8}} \mathrm{H}_{11}\right]^{-}$Anion (2-). (a) Cs^{+}salt from 1a: In a typical experiment, a solution of $192 \mathrm{mg}(1 \mathrm{mmol})$ of $\mathbf{1 a}$ in 20 mL of THF was treated with $c a .100 \mathrm{mg}(2.17 \mathrm{mmol})$ of finely cut sodium metal and $100 \mathrm{mg}(0.78 \mathrm{mmol})$ of naphthalene under heating at reflux for 6 h . The colored mixture was then treated (dropwise) with aqueous 1 M solution of $\mathrm{CsOH}(5 \mathrm{~mL})$ under stirring and cooling to $0^{\circ} \mathrm{C}$. The THF was evaporated, and the white precipitate dissolved under heating in a minimum amount of water and filtered. The filtrate was left to crystallize to give typically $165 \mathrm{mg}(62 \%)$ of the Cs^{+}salt. For $2^{-}\left(\mathrm{Cs}^{+}\right.$salt): IR (KBr) 3428 (m), 2596 (s), 2576 (s), 2520 (s), 2476 (s), 1632 (w), 1610 (w), 1452 (w), 1100 (w), 1060 (w), 1032 (m), 986 (w), 958 (m), 894 (w), $870(\mathrm{~m}) \mathrm{cm}^{-1}$. Anal. Calcd: C, 13.51; $\mathrm{H}, 4.16$. Found: C, 13.40; $\mathrm{H}, 4.09$. (b) Cs^{+}salt from 2a: A solution of $135 \mathrm{mg}(1 \mathrm{mmol})$ of $\mathbf{2 a}$ in 20 mL of THF was treated with aqueous 1 M solution of $\mathrm{CsOH}(5 \mathrm{~mL})$ under stirring at room temperature for 6 h . The THF was evaporated, and the white precipitate dissolved under heating in a minimum amount of water and filtered. The filtrate was left to crystallize to give typically 256 mg ($0.96 \mathrm{mmol}, 96 \%$) of the Cs^{+}salt of $\mathbf{2}^{-}$. The Cs^{+}salt can be converted in essentially quantitative yields to $\mathrm{NMe}_{4}{ }^{+}, \mathrm{PPh}_{4}{ }^{+}$, and Tl^{+}salts by heating a concentrated aqueous solution with $\mathrm{NMe}_{4} \mathrm{Cl}, \mathrm{PPh}_{4} \mathrm{Cl}$, and TlNO_{3} for 30 min , followed by cooling to ambient temperature, filtration, and drying in vacuo at $50{ }^{\circ} \mathrm{C}$ for 6 h . For $\mathrm{Tl}^{+}\left[\right.$nido-7,8,9- $\left.\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}\right]$: IR (KBr) 3548 (sh), 3420 (m), 2576 (s), 2508 (s), 2492 (s), 2456 (s), 1616 (w), 1094 (w), 1052 (w), 1024 (m), 978 (w), 946 (w), 892 (w), 866 (m), 810 (w), 742 (w) cm^{-1}. Anal. Calcd: 10.62; H, 3.27. Found: C, $10.11 ; \mathrm{H}, 3.05$. (c) PSH^{+}salt from 2a: A solution of $67.3 \mathrm{mg}(0.5$ $\mathrm{mmol})$ of $\mathbf{2 a}$ in 10 mL of hexane was treated with a solution of 107 $\mathrm{mg}(0.5 \mathrm{mmol})$ of PS in 10 mL of hexane, and the mixture was left to stand for 6 h . The white precipitate was isolated by filtration and vacuum dried at ambient temperature to give 165 mg (95%) of the PSH^{+}salt of 2^{-}, which was identified by NMR spectroscopy.
nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{12}$ (2a), 8-Me-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{11}$ (2b), and 7($\mathbf{M e}_{\mathbf{2}} \mathbf{N H}$)-nido-7,8,9- $\mathrm{C}_{\mathbf{3}} \mathbf{B}_{\mathbf{8}} \mathbf{H}_{\mathbf{1 0}} \mathbf{(1 d)}$. In a typical experiment, a solution of $192 \mathrm{mg}(1 \mathrm{mmol})$ of $\mathbf{1 a}$ in 20 mL of THF was treated with ca. 100 $\mathrm{mg}(2.17 \mathrm{mmol})$ of finely cut sodium metal and $100 \mathrm{mg}(0.78 \mathrm{mmol})$ of naphthalene for 12 h at room temperature to develop a green-brown coloration of the mixture. The mixture was filtered using a Schlenk apparatus, and the filtrate treated with ca. $0.5 \mathrm{~mL} \mathrm{~F}_{3} \mathrm{CCOOH}$ under

[^9]cooling at $0^{\circ} \mathrm{C}$. The THF was evaporated, the residue dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to preparative TLC in hexane to develop three major bands of R_{f} (prep.) $0.45,0.30$, and $0-0.05$. The compound isolated by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporation from the second band, identified as pure 2a via analytical TLC in hexane ($R_{f} 0.20$), was sublimed in vacuo at $50-70^{\circ} \mathrm{C} /$ bath to give the first crop of $\mathbf{2 a}$ ($39 \mathrm{mg}, \mathbf{2 9 \%}$). Repeated TLC of the first band in hexane and a more detailed separation of pure fractions (checked by analytical TLC), followed by sublimation ($50-70^{\circ} /$ bath) of the solid materials obtained by the evaporation of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts led to the isolation of pure compounds $\mathbf{2 a}(26 \mathrm{mg}, 16 \%$, total yield $65 \mathrm{mg}, 0.45$ $\mathrm{mmol}, 45 \%$) and $\mathbf{2 b}$ ($13 \mathrm{mg}, 9 \%$) as white crystalline solids, moderately stable in air, but reasonably stable under inert atmosphere. The compound mixture isolated from the third band by extraction with acetone was repurified by preparative TLC in $10 \% \mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to isolate the main band of R_{f} (prep.) 0.48 by extraction with acetone, evaporation, and vacuum sublimation of the residue at $50-70^{\circ} \mathrm{C} / \mathrm{bath}$ to give $15.5 \mathrm{mg}(9 \%)$ of $\mathbf{1 d}$, which was isolated as a white, air-stable solid. For 2a: mp $185{ }^{\circ} \mathrm{C}, R_{f}$ (anal.) (hexane) 0.15, IR (KBr) 3068 (w), 2920 (w), 2576 (s), 2356 (sh), 2328 (sh), 1290 (w), 1254 (w), 1162 (w), 1164 (w), 1060 (sh), 1046 (m), 1018 (sh), 1004 (sh), 966 (w), 926 (w), 916 (w), 884 (m), 856 (w), 800 (sh), 792 (w), 750 (sh), 7236 (w), 652 (w), 634 (w), 578 (sh), 552 (w), $510 \mathrm{~cm}^{-1}$ (w). Anal. Calcd: C, 26.75; H, 8.98. Found: C, 27.05; H, 8.75. Mass calcd for ${ }^{12} \mathrm{C}_{3}{ }^{11} \mathrm{~B}_{8}{ }^{1} \mathrm{H}_{12}$ 136, found 136 (25\%), 133 (100%). For $\mathbf{2 b}$: mp $100{ }^{\circ} \mathrm{C}$, R_{f} (anal.) (hexane) 0.20. Anal. Calcd: C, 32.30; H, 10.17. Found: $\mathrm{C}, 33.41 ; \mathrm{H}, 10.31$. Mass calcd for ${ }^{12} \mathrm{C}_{4}{ }^{11} \mathrm{~B}_{8}{ }^{1} \mathrm{H}_{14} 150$, found 150 (2\%), $146(100 \%)$. For 1d: $\operatorname{mp} 213{ }^{\circ} \mathrm{C}, R_{f}$ (anal.) $\left(20 \% \mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.22$, IR (KBr) 3084 (vs), 3028 (s), 2788 (m), 2708 (w), 2588 (sh), 2548 (vs), 2512 (vs), 2476 (vs), 1462 (s), 1448 (s), 1430 (s), 1396 (m), 1360 (m), 1290 (w), 1226 (w), 1188 (w), 1156 (w), 1124 (w), 1074 (sh), 1050 (m), 1000 (vs), 962 (m), 916 (m), 856 (m), 824 (w), 782 (w), 694 (w), 666 (w), $606 \mathrm{~cm}^{-1}$ (w). Mass calcd for ${ }^{12} \mathrm{C}_{5}{ }^{11} \mathrm{~B}_{8}{ }^{14} \mathrm{~N}^{1} \mathrm{H}_{17} 179$, found 179 (30%), 161 (100%). When the same experiment was carried out under heating at reflux for 12 h , the only reasonably isolable preparative TLC fraction was that of R_{f} (prep.) 0.30 from which 84 $\mathrm{mg}(0.62 \mathrm{mmol}, 62 \%)$ of $\mathbf{2 a}$ was isolated as described above.

10-Me-7-($\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{~N}$)-nido-7,8,9- $\mathrm{C}_{3} \mathrm{~B}_{8} \mathrm{H}_{10}$ (2c) and 10,11-Me,-7$\left(\mathrm{Bu}^{t} \mathrm{Me}_{\mathbf{2}} \mathrm{N}\right)$-nido-7,8,9-C $\mathbf{C}_{\mathbf{3}} \mathrm{B}_{\mathbf{8}} \mathrm{H}_{\mathbf{9}}$ (2d). (a) From 1b: To a suspension of $180 \mathrm{mg}(7.5 \mathrm{mmol})$ of NaH (obtained from 60% mineral oil suspension by washing with hexane) in 20 mL of glyme was added a solution of $\mathbf{1 b}(600 \mathrm{mg}, 2.91 \mathrm{mmol})$ in 20 mL of glyme (hydrogen evolution) together with $2.13 \mathrm{~g}(15 \mathrm{mmol})$ of MeI. The mixture was heated at reflux for 3 h , and the glyme was then removed by evaporation. Under cooling to $0^{\circ} \mathrm{C}$, the residue was treated with 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \mathrm{~mL}$ of water (dropwise), and then with 2 mL of concentrated HCl . The bottom layer was separated, dried with MgSO_{4}, and evaporated. The oily residue was dissolved in a minimum amount of MeCN and separated by preparative TLC in $5 \% \mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to isolate three major bands of R_{f} (prep.) 0.82 (fraction A), 0.54 (fraction B), and 0.31 (fraction C). The fractions B and C were purified by repeated preparative TLC to give $152 \mathrm{mg}(0.69 \mathrm{mmol}, 24 \%)$ of $\mathbf{1 c}$ and $208 \mathrm{mg}(1.1 \mathrm{mmol}, 37 \%)$ of 1a, respectively (see ref 1 b$)$. A compound mixture from fraction A was separated by preparative TLC in 20% $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to isolate two major bands of R_{f} (prep.) 0.55 (fraction D) and 0.24 (fraction E) on extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the fraction E to dryness and vacuum distillation of the residual liquid at $c a .100{ }^{\circ} \mathrm{C}$ (bath) onto a cold finger $\left(c a .0^{\circ} \mathrm{C}\right)$ gave $28 \mathrm{mg}(0.12$ $\mathrm{mmol}, 4 \%$) of $\mathbf{2 c}$ as white, air-stable crystals. For $\mathbf{2 c}$: $\mathrm{mp} 41^{\circ} \mathrm{C}, R_{f}$ (anal.) (hexane) 0.05, IR (KBr) 3084 (w), 2964 (s), 2908 (sh), 2816 (sh), 2588 (vs), 1462 (m), 1388 (m), 1360 (m), 1314 (m), 1286 (m), 1262 (w), 1230 (m), 1212(m), 1184 (w), 1162 (m), 1106 (w), 1088 (sh), 1054 (m), 1014 (m), 990 (m), 966 (m), 926 (w), 834 (w), 736 cm^{-1} (w). Anal. Calcd: C, 46.04; H, 10.73. Found: C, 45.28; H, 10.82. Mass calcd for ${ }^{12} \mathrm{C}_{9}{ }^{11} \mathrm{~B}_{8}{ }^{14} \mathrm{~N}^{1} \mathrm{H}_{25}$ 235, found 235 (8\%), 233 (90%). Fraction D (identified by ${ }^{11} \mathrm{~B}$ NMR as a mixture of substituted derivatives of $\mathbf{2 a}$) was evaporated to dryness, dissolved in 5 mL of glyme, and heated at reflux for 3 h upon addition of $24 \mathrm{mg}(1 \mathrm{mmol})$ of NaH and $50 \mathrm{mg}(0.35 \mathrm{mmol})$ of MeI. The volatile materials were evaporated, and, under cooling to $0{ }^{\circ} \mathrm{C}$, the residue was treated with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~mL}$ of water (dropwise), and then with 1 mL of concentrated HCl . The bottom layer was separated, dried with MgSO_{4}, and evaporated. The oily residue was dissolved in a minimum amount
of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and separated by preparative TLC in hexane to isolate the major band of R_{f} (prep.) 0.45 , from which $60 \mathrm{mg}(0.24 \mathrm{mmol}, 8 \%)$ of 2d was isolated by evaporation and vacuum distillation similarly as compound $\mathbf{2 c}$ to obtain white, air-stable crystals. For $\mathbf{2 d}: \mathrm{mp} 68^{\circ} \mathrm{C}$, R_{f} (anal.) (hexane) 0.15, IR (KBr) 2981 (s), 2910 (s), 2875 (sh), 2833 (m), 2629 (vs), 2601 (vs), 2580 (vs), 2538 (vs), 1469 (s), 1398 (s), 1363 (s), 1321 (vs), 1307 (s), 1244 (m), 1173 (m), 1117(m), 1061 (m), 1019 (s), 991 (sh), 963 (m), 857 (w), 815 (m), 759 (m), 723 (m), 674 (m), $597(\mathrm{w}), 576(\mathrm{~m}), 548 \mathrm{~cm}^{-1}(\mathrm{~m})$. Anal. Calcd: C, $48.28 ; \mathrm{H}$, 10.94. Found: C, 47.16; H, 11.22. Mass calcd for ${ }^{12} \mathrm{C}_{10}{ }^{11} \mathrm{~B}_{8}{ }^{14} \mathrm{~N}^{1} \mathrm{H}_{27}$ 249, found $249(4 \%), 247(48 \%)$. (b) From 1c: The reaction of 1c ($642 \mathrm{mg}, 2.91 \mathrm{mmol}$) in 20 mL of glyme with $2.13 \mathrm{~g}(15 \mathrm{mmol})$ of MeI, performed exactly under the same conditions as part (a) resulted in the recovery of $95 \mathrm{mg}(0.43 \mathrm{mmol}, 15 \%)$ of $\mathbf{1 c}$ and the isolation of $202 \mathrm{mg}(1.07 \mathrm{mmol}, 36 \%)$ of $\mathbf{1 a}, 35 \mathrm{mg}(0.15 \mathrm{mmol}, 5 \%)$ of $\mathbf{2 c}$, and $83 \mathrm{mg}(0.33 \mathrm{mmol}, 11 \%)$ of $\mathbf{2 d}$.
$\mathbf{1 0}-\left(\mathrm{Me}_{3} \mathbf{N}\right)$-nido-7,8,10- $\mathbf{C}_{3} \mathbf{B}_{8} \mathbf{H}_{\mathbf{1 0}}$ (3a). Compound 1a (192 mg, 1 mmol) was heated in a sealed glass ampoule at $350^{\circ} \mathrm{C}$ for 20 min . After being cooled to ambient temperature, the contents were removed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the product was purified by preparative TLC in 10% hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to isolate the only fraction of R_{f} (prep.) 0.50 by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were evaporated, and the crystalline residue was washed with 5 mL of hexane and vacuum dried to give $186 \mathrm{mg}(97 \%)$ of $\mathbf{3 a}$. The analytical product can be obtained by sublimation at $150-200^{\circ} \mathrm{C}$. For 3a: mp $290^{\circ} \mathrm{C}, R_{f}$ (anal.) $\left(\mathrm{CH}_{2}-\right.$ Cl_{2}) 0.73, IR (KBr) 3100 (w), 3051 (w), 3028 (m), 2959 (w), 2573 (s), 2552 (s), 2545 (s), 2523 (s), 2453 (s), 1983 (s), 1462 (s), 1441 (sh), 1406 (s), 1096 (m), 1005 (m), 948 (s), 906 (s), 878 (w), 822 (w), 808 (w), 759 (w), 745 (w), $534 \mathrm{~cm}^{-1}$ (m). Anal. Calcd: C, 37.57 ; H, 9.98. Found: $\mathrm{C}, 37.71 ; \mathrm{H}, 10.15$. Mass calcd for ${ }^{12} \mathrm{C}_{6}{ }^{11} \mathrm{~B}_{8}{ }^{14} \mathrm{~N}^{1} \mathrm{H}_{19}$ 193, found 193 (40\%), 192 (100\%).
$\mathbf{1 0}-\left(\mathrm{Me}_{2} \mathbf{N H}\right)$-nido-7,8,10- $\mathrm{C}_{3} \mathrm{~B}_{\mathbf{8}} \mathrm{H}_{\mathbf{1 0}}$ (3b). In a typical experiment, a solution of $192 \mathrm{mg}(1 \mathrm{mmol})$ of $\mathbf{3 a}$ in 20 mL of THF was treated with $c a .100 \mathrm{mg}(2.17 \mathrm{mmol})$ of finely cut sodium metal and $100 \mathrm{mg}(0.78$ mmol) of naphthalene under heating at reflux for 2 h . The colored mixture was then treated (dropwise) with 20 mL of water and ca. 1 mL of $\mathrm{F}_{3} \mathrm{CCOOH}$ while cooling to $0^{\circ} \mathrm{C}$. The THF was evaporated, and the residual mixture extracted with three 20 mL portions of $\mathrm{CH}_{2}-$ Cl_{2}. The combined organic layers were reduced in volume and subjected to column chromatography or preparative TLC using $\mathrm{CH}_{2}{ }^{-}$ Cl_{2} to isolate the main fraction of $R_{f} 0.10$. This was isolated by evaporation and recrystallization of the solid residue from concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution that was overlaid by a 2 -fold amount of hexane to give $161 \mathrm{mg}(94 \%)$ of $\mathbf{3 b}$. For $\mathbf{3 b}$: $\mathrm{mp} 158{ }^{\circ} \mathrm{C}, R_{f}$ (anal., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 0.10, IR (KBr): 3444 (w, br), 3160 (s), 3028 (w), 2724 (w), 2540 (s), 2492 (sh), 1466 (s), 1430 (s), 1402 (m), 1382 (s), 1368 (s), 1258 (w), $1202(\mathrm{~m}), 1156$ (w), 1096 (m), 1052 (w), 1008 (s), 986 (m), 962 (s), 948 (s), 906 (m), 866 (m), 846 (m), $800(\mathrm{~m}), 740(\mathrm{~m}) 680(\mathrm{w}), 656$ (w), $532(\mathrm{~m}), 316 \mathrm{~cm}^{-1}(\mathrm{~m})$. Anal. Calcd: C, $34.97 ; \mathrm{H}, 9.97$. Found: C, $35.10 ; \mathrm{H}, 9.82$. Mass calcd for ${ }^{12} \mathrm{C}_{5}{ }^{11} \mathrm{~B}_{8}{ }^{14} \mathrm{~N}^{1} \mathrm{H}_{17} 179$, found 179 (40%), 178 (100%).

Salts of the $\left[\right.$ nido- $\mathbf{7 , 8 , 1 0}-\mathrm{C}_{3} \mathbf{B}_{\mathbf{8}} \mathbf{H}_{\mathbf{1 0}}{ }^{-}$Anion (4). Compound $\mathbf{2}^{-}\left(\mathrm{Cs}^{+}\right.$ salt) ($267 \mathrm{mg}, 1 \mathrm{mmol}$) was heated under nitrogen at $350^{\circ} \mathrm{C}$ for 20 min . After being cooled to ambient temperature, the contents were recrystallized from a minimum amount of water. The white crystalline material separated after cooling at $0^{\circ} \mathrm{C}$ was isolated by filtration and dried in vacuo at $50^{\circ} \mathrm{C}$ for 6 h to give $168 \mathrm{mg}(63 \%)$ of the Cs^{+}salt of $\mathbf{4}^{-}$. For $\mathbf{4}^{-}\left(\mathrm{Cs}^{+}\right.$salt): R_{f} (anal.; $33 \% \mathrm{MeCN}$ in $\left.\mathrm{CHCl}_{3}\right) 0.22$. Anal. Calcd: C, 13.51; H, 4.16. Found: C, 13.20; H, 4.02. Alternatively, a hot solution of the Cs^{+}salt was precipitated by equivalent amounts of $\mathrm{PPh}_{4} \mathrm{Cl}$ or TINO_{3} to isolate $308 \mathrm{mg}(65 \%)$ and $227 \mathrm{mg}(67 \%)$ of the $\mathrm{PPh}_{4}{ }^{+}$and Tl^{+}salts, respectively. For $4^{-}\left(\mathrm{PPh}_{4}{ }^{+}\right.$salt): R_{f} (anal.; 33% MeCN in CHCl_{3}) 0.75 ; IR (KBr): 3416 (w, br), 3232 (sh), 3076 (w), 3056 (w), 3028 (w), 2512 (s), 1582 (w), 1480 (m), 1434 (s), 1388 (sh), 1336 (w), 1314 (w), 1180 (w), 1162 (w), 1106 (s), 1028 (w), 994 (m), 954 (w), 934 (w), 912 (w), 754 (w), 722 (m), 686 (s), $518 \mathrm{~cm}^{-1}$ (s). For $\mathbf{4}^{-}$(Tl^{+}salt): R_{f} (anal.; $33 \% \mathrm{MeCN}$ in CHCl_{3}) 0.16 .

Single-Crystal Diffraction Analysis of 3a. The white single crystals of $\mathbf{3 a}$ were grown by slow evaporation of a saturated $\mathrm{Me}_{2} \mathrm{CO}$ solution at room temperature. A crystal of dimensions $0.3 \times 0.2 \times 0.2 \mathrm{~mm}$ was measured on a CAD4-MACHII-PC four-circle diffractometer using Mo K_{α} X-radiation $(\lambda=0.71069 \AA$) at 293(2) K. A brief summary of crystal data and data collection parameters are given in Table 2. Three standard reflections monitored every 1 h showed 2% intensity variation
during the measurement. The data were corrected for Lorentz and polarization effects but not for absorption. The structure was solved by direct methods using SHELXS86 ${ }^{36}$ and was refined by full-matrix least squares using SHELXL93. ${ }^{37}$ The function minimized was $\sum w\left(F_{0}{ }^{2}\right.$ $\left.-F_{\mathrm{c}}{ }^{2}\right)^{2}$, where $w=1 /\left[\sigma\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0704 \mathrm{P})^{2}\right]$ and $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$. All non-hydrogen atoms were refined with anisotropic thermal parameters, and the hydrogen atoms were located on a Fourier difference map and refined isotropically. The molecule is located on a mirror plane in the $P 2_{1} / m$ space group; the atoms $\mathrm{N}, \mathrm{C}(1)$, and $\mathrm{C}(10)$ are placed in special positions 2 e , and each remaining atom occupies two positions with occupation factor 0.5.

Computational Methods. Geometries were fully optimized in C_{s} symmetry using standard $a b$ initio method ${ }^{38}$ beginning at the SCF level with the $3-21 \mathrm{G}$ and $6-31 \mathrm{G}^{*}$ basis sets. The $6-31 \mathrm{G}^{*}$ frequency calculations confirmed the structures to be minima. The final optimization employed second-order Møller-Plesset (MP2) perturbation theory in the frozen-core (fc) approximation (denoted as MP2/6-31G*; with fc omitted for simplicity). All calculations were carried out on a Cray YMP-8 computer using the Gaussian 94 program. ${ }^{39}$ Chemical shieldings were computed with the IGLO (individual gauge for localized orbitals) program ${ }^{11}$ using Huzinaga basis sets: ${ }^{40}$ first DZ, i.e., (7s3p) contracted to [4111, 21] for B, C and (3s) contracted to [21] for H, and second II^{\prime}, i.e., (9s5p1d) contracted to [51111, 2111, 1] for B, C and (3s) contracted to [21] for H. The calculated relative chemical shieldings are presented in Table 7 below. DZ results were obtained with an IGLO lobe version whereas for II' calculations the direct IGLO program (DIGLO) ${ }^{11 \mathrm{~d}}$ was used.

Acknowledgment. The Spanish Government (Grant SAB0067 to B.Š.), the Banco Bilbao de Vizcaya (BBV Foundation, 1996 Grant to B.Š.), the CIRIT (project QNF92-43B), Grant Agency of the Czech Academy of Sciences of the Czech Republic (Grant No. A4032502), the Grant Agency of the Czech Republic (Grant No. 203/97/0060), the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Deutscher Akademischer Austauschdienst (scholarship to D.H.) provided support. We also thank the Leibnitz Rechenzentrum in München for granting computer time on a Cray YMP-8 computer; Professor W. Kutzelnigg, Dr. M. Schindler, Dr. U. Fleischer, and Dr. Ch. van Wüllen for the IGLO and DIGLO programs; Dr. M. Bühl (Universität Zürich) for performing the II'//MP2/6-31G* calculations; Drs. R. Rousseau and E. Canadell (Institute of Material Sciences, Bellaterra) and Professor S. Lee (University of Michigan) for preliminary RHF/3-21G calculations of anions $\mathbf{2}^{-}$and $\mathbf{4}^{-}$; Dr. M. Hofmann (Universität Erlangen-Nürnberg) for helpful comments; and Dr. E. Večerníková for IR measurements.

Supporting Information Available: Listings of MP2/6$31 \mathrm{G}^{*}$ calculated coordinates for $\mathbf{2}^{-}, \mathbf{2 a}$, and $\mathbf{4}^{-}$(1 page). Tables of crystal data and structure refinement, atomic coordinates for non-hydrogen atoms, bond lengths and bond angles, calculated hydrogen positional parameters and isotropic displacement (16 pages) for 3a. See any masthead page for ordering and Internet access instructions.

JA971194U

(36) Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, A46, 467.
(37) Sheldrick, G. M. SHELXL93, Program for Crystal Structure Refinement from Diffraction Data; University of Göttingen: Göttingen, 1993.
(38) See, for example: Hehre, W; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab initio Molecular Orbital Theory; Wiley: New York, 1986; and references therein.
(39) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomprets, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, L.; Stewart, J. P.; HeadGordon, M.; Gonzales, C.; Pople, J. A. Gaussian 94, Revision B.2; Gaussian Inc.: Pittsburgh, PA, 1995.
(40) Huzinaga, S. Approximate Atomic Wave Functions; University of Alberta: Edmonton, Canada, 1971.

[^0]: * Corresponding author: Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 25068 Rež, Czech Republic. E-mail: stibr@uachr.iic.cas.cz. Fax.: +4202-6875491.
 ${ }^{\dagger}$ Institute of Inorganic Chemistry.
 * Charles University.
 § Institute of Material Sciences.
 ${ }^{\perp}$ Universität Erlangen-Nürnberg.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, August 1, 1997.
 (1) Stíbr, B.; Holub, J.; Teixidor, F.; Viñas, C. J. Chem. Soc., Chem. Commun. 1995, 795-796. (b) Štíbr, B.; Holub, J.; Císařová, I.; Teixidor, F.; Viñas, C.; Fusek, J.; Plzák, Z. Inorg. Chem. 1996, 35, 3635-3642.
 (2) (a) Kang, S. O.; Furst, G. T.; Sneddon, L. G. Inorg. Chem. 1989, 28, 2339-2347. (b) Su, K.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 1992, 114, 2730-2731. (c) Su, K.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 1993, 115, 10004-10017.

[^1]: (3) (a) Shedlow, A. M.; Carroll, P. J.; Sneddon, L. G. Organometallics 1995, 14, 4046-4047. (b) Rousseau R.; Canadell E.; Lee, S.; Teixidor, F.; Viñas, C.; Štíbr, B. New J. Chem. 1996, 20, 277-281.
 (4) Štíbr, B.; Holub, J.; Císařová I.; Teixidor, F.; Viñas C. Inorg.Chim. Acta 1996, 245, 129-131.

[^2]: (5) Štíbr, B.; Holub, J.; Teixidor, F.; Viñas, C. Collect. Czech. Chem. Comтип. 1995, 60, 2023-2027.
 (6) See, for example: (a) Hyatt, D. E.; Scholer, F. R.; Todd, L. J.; Warner, J. L. Inorg. Chem. 1967, 6, 2229. (b) Hyatt, D. E.; Owen, D. A.; Todd, L. J. Inorg. Chem. 1966, 5, 1749. (c) Knoth, W. H.; Little, J. L.; Lawrence, J. F.; Scholer, F. R.; Todd, L. J. Inorg. Synth. 1968, 11, 33. (d) Plešek, J.; Jelínek, T.; Drdáková E.; Heřmánek S.; Štíbr, B. Collect. Czech. Chem. Commun. 1984, 49, 1559-1562.
 (7) Hawthorne, M. F.; Young, D. C.; Garrett, P. M.; Owen, D. A.; Schwerin, S. G.; Tebbe, F. N.; Wegner P. A. J. Am. Chem. Soc. 1968, 90, 862.
 (8) See, for example: Dunks, G. B.; Hawthorne, M. F. In Boron Hydride Chemistry; Muetterties, E. L., Ed.; Academic: New York, 1975; Chapter 11, pp 383-430.

[^3]: (9) Garrett, P. M.; Tebbe, F. N.; Hawthorne, M. F. J. Am. Chem. Soc. 1964, 86, 5016.

[^4]: (10) (a) Wade, K. J. Chem. Soc., Chem. Commun. 1971, 792-793. (b) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1-66. (c) Wade, K.; O'Neill, M. E. Compr. Organomet. Chem. 1987, 1, 25-35. (d) Wade, K.; O'Neill, M. E. In Metal Interactions with Boron Hydrides; Grimes, R. N., Ed.; Plenum: New York, 1982; Chapter 1, pp 1-41. (e) Williams, R. E. Inorg. Chem. 1971, 10, 210-214. (f) Wade, K. Chem. Brit. 1975, 11, 177. (g) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1-66. (h) Williams, R. E. Adv. Inorg. Chem. Radiochem. 1976, 18, 67-142. (i) Rudolph, R. W.; Pretzer, W. R. Inorg. Chem. 1972, 11, 1974. (j) Rudolph, R. W. Acc. Chem. Res. 1976, 9, 446-452. (k) Williams, R. E. In Electron Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; Wiley: New York, 1991; pp 11-93. (1) Williams, R. E. Chem. Rev. 1992, 92, 177-207.
 (11) (a) Kutzelnigg, W. Isr. J. Chem. 1980, 19, 193. (b) Schindler, M.; Kutzelnigg, W. J. Phys. Chem. 1982, 76, 1919. (c) Kutzelnigg, W.; Schindler, M.; Fleischer, U. NMR, Basic Principles and Progress; Springer Verlag: Berlin, New York, 1990; Vol. 23, p 165. (d) Meier, U.; van Wüllen, Ch.; Schindler, M. J. Comput. Chem. 1992, 13, 551.
 (12) See, for example: (a) Bühl, M.; Schleyer P. v. R. J. Am. Chem. Soc. 1992, 114, 477, and references therein. (b) Mebel, A. M.; Charkin, O. P.; Bühl, M.; Schleyer P. v. R. Inorg. Chem. 1993, 32, 463. (c) McKee, M. L.; Bühl, M.; Schleyer P. v. R. Inorg. Chem. 1993, 32, 1712. (d) Onak, T., Tran, D.; Tseng, J.; Diaz, M.; Arias, J.; Herrera, S. J. Am. Chem. Soc. 1993, 115, 9210. (e) For a comprehensive bibliography of applications of the ab initio/IGLO/NMR method, see: Diaz, M.; Jaballas, T.; Arias, J.; Lee, H.; Onak, T. J. Am. Chem. Soc. 1996, 118, 4405.
 (13) For electron correlation effects on computed ${ }^{11} \mathrm{~B}$ chemical shifts, see: (a) Bühl, M.; Gauss, J.; Hofmann M; Schleyer P. v. R. J. Am. Chem. Soc. 1993, 115, 12385. (b) Schleyer P. v. R.; Gauss, J.; Bühl, M.; Greatrex, R.; Fox, M. A. J. Chem. Soc., Chem. Commun. 1993, 1766.
 (14) Onak, T.; Tseng, J.; Diaz, M.; Tran, D.; Arias, J.; Herrera, S. Inorg. Chem. 1993, 32, 487.

[^5]: (16) Wing, R. M. J. Am. Chem. Soc. 1970, 92, 1187.

[^6]: (17) Köster, R.; Seidel, G.; Wrackmeyer, B.; Blässer, D.; Boese, R.; Bühl, M.; Schleyer, P. v. R. Chem. Ber. 1991, 2715.

[^7]: (18) (a) Štíbr, B.; Jelínek, T.; Drdáková, E.; Heřmánek, S.; Plešek J. Polyhedron 1988, 7, 669. (b) Bausch, J. W.; Rizzo, R. C.; Sneddon, L. G.; Wille, A. E.; Williams, R. E. Inorg. Chem. 1996, 35, 131-135.
 (19) Astheimer, R. J.; Sneddon, L. G. Inorg. Chem. 1983, 22, 19281934.
 (20) Plešek, J.; Štíbr, B.; Heřmánek, S. Chem. Ind. (London) 1974, 662663.
 (21) Brattsev, V. A; Knyazev, S. P.; Danilova, G. N.; Stanko V. I. Zh. Obsch. Khim. 1975, 45, 1393.
 (22) Hnyk, D.; Hofmann, M.; Schleyer, P. v. R.; Bühl, M.; Rankin, D. W. H. J. Phys. Chem. 1996, 100, 3435-3440.
 (23) Heřmánek, S. Chem. Rev. 1992, 92, 325-362, and references therein.
 (24) (a) Spencer, J. L.; Green, M.; Stone, F. G. A. J. Chem. Soc., Chem. Commun. 1972, 1178. (b) Colquhoun, H. M.; Greenhough, T. J.; Wallbridge, M. G. H. Acta Crystallogr. 1978, B34, 2373. (c) Jutzi, P.; Wegener, D.; Hursthouse, M. B. Chem. Ber. 1991, 124, 295. (d) Manning, M. J.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1991, 30, 3589-3591.

[^8]: (27) Greatrex, R.; Greenwood, N. N.; Kirk, M. J. Chem. Soc., Chem. Соттии. 1991, 1510-1511.
 (28) Fox, M. A.; Greatrex, R. J. Chem. Soc., Dalton Trans. 1994, 3197.
 (29) Fox, M. A.; Greatrex, R.; Hofman, M.; Schleyer, P. v. R. Angew. Chem., Int. Ed. Engl. 1995, 33, 2298-2300.
 (30) Fox, M. A.; Greatrex, R.; Nikrahi, A. J. Chem. Soc., Chem. Commun. 1996, 175-176.
 (31) (a) Howard, J. W.; Grimes, R. N. J. Am. Chem. Soc. 1969, 91, 6499-6500. (b) Howard, J. W.; Grimes, R. N. Inorg. Chem. 1972, 11, $263-$ 267. (c) Siebert, W. Angew. Chem., Int. Ed. Engl. 1985, 24, 943-958. (d) Siebert, W. Pure Appl. Chem. 1987, 59, 947-954. (e) Siebert, W. Pure Appl. Chem. 1988, 60, 1345-1348. (f) Attwood, A. T; Fonda, K. K.; Grimes, R. N.; Brodt, G.; Hu, D.; Zenneck, U.; Siebert, W. Organometallics, 1989, 8, 1300-1303. (g) Brodt, G.; Kuhlman, T.; Siebert, W. Chem. Ber. 1989, 122, 829-831. (h) Plumb, C. A.; Carroll, P. J.; Sneddon, L. G. Organometallics 1992, 11, 1665-1671. (i) Plumb, C. A.; Carroll, P. J.; Sneddon, L. G. Organometallics 1992, 11, 1672-1680. (j) Plumb, C. A.; Sneddon, L. G. Organometallics 1992, 11, 1681-1685. (k) Barnum, B. A.; Carroll, P. J.; Sneddon, L. G. Inorg. Chem. 1997, 36, 1327-1337.

[^9]: (32) Shriver, D. F.; Drezdon, M. A. Manipulation of Air Sensitive compounds, 2nd ed.; Wiley: New York, 1986.
 (33) See, for example: Plešek J.; Štíbr, B.; Fontaine, X. L. R.; Kennedy, J. D.; Heřmánek S.; Jelínek, T. Collect. Czech. Chem. Commun. 1991, 56, 1618-1635.
 (34) McFarlane, W. Proc. R. Soc. London, Ser. A 1968, 306, 185.
 (35) See, for example: Schraml, J.; Bellama, J. M. Two-Dimensional NMR Spectroscopy; Wiley: New York, 1982; and references therein.

